Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 27-11-2017 21:22:49

Nathan.h
Membre
Inscription : 19-11-2017
Messages : 3

Polygones et cercle

Bonsoir,
voilà un problème que je me suis posé il y a un certain temps temps que je n'arrive pas à résoudre :
Soit C un cercle de rayon r, et P un polygone quelconque à n coté(s), sous quel condition ce polygone est-il contenu dans le cercle ?

La solution recherchée est une solution qui ne demanderai pas de devoir dessiner ce polygone sur une feuille puis de le découper pour voir s'il rentre dans le cercle que l'on dessiné, mais une règle général, pour savoir rapidement si c'est le cas (J'ai bien pensé à passer par les complexes, et d'autres me l'ont suggérés, mais la méthode est trop laborieuse, et comment ferait t'on avec un polygone quelconque à 1000 côtés)

Hors ligne

#2 15-12-2017 00:27:54

HacH
Invité

Re : Polygones et cercle

Bonjour,

L'air du cercle est A(C) = Pi*r^2
Soit P le polygone a n coté
P_0, P_1, … , P_n = P_0 sont les sommets de P de coordonnées P_i = (x_i ; y_i).

Je pense qui faut que A(P) soit inferieur ou égale à A(C)

Pour le calcul d'aire de A(P), Wikipédia traite le problème pour des polygones simple sans croisement des cotés: https://fr.wikipedia.org/wiki/Aire_et_c … n_polygone

Sinon pour les cas plus complexe d'apres le meme article wikipedia il faudrait faire un calcul d'intégral.

#3 23-12-2017 08:40:23

Wiwaxia
Membre
Lieu : Paris 75013
Inscription : 21-12-2017
Messages : 58

Re : Polygones et cercle

Bonjour,

Les polygones envisagés étant de forme quelconque, je crois que ton problème est celui de la recherche du plus petit cercle circonscrit à un nuage de points.

Il intervient pour l'essentiel deux étapes:
a) la recherche du cercle admettant pour diamètre les deux points (Mi, Mj) les plus éloignés du nuage, et la vérification de ce que tous les autres points sont éventuellement situés à l'intérieur (soit Ca, s'il existe).
b) la recherche du plus petit cercle construit sur trois points, et contenant tous les autres (soit Cb).

La solution correspond à l'un des deux cercles précédents.

Voir le problème du cercle minimum.

Dernière modification par Wiwaxia (23-12-2017 08:47:53)

Hors ligne

#4 23-12-2017 18:11:39

Nathan.h
Membre
Inscription : 19-11-2017
Messages : 3

Re : Polygones et cercle

Bonsoir,
Tout d'abord merci pour vos réponses,
la condition que vous avez énoncé HacH, est nécessaire mais pas suffisante (on peut construire un triangle ayant une plus petite aire qu'un cercle donné sans pour autant qu'il soit contenu dans ce même cercle).
Pour votre réponse Wiwaxia, ça me semble être ça, merci beaucoup, je ne connaissais pas le problème du cercle minimum. Il me semble que votre 2ème solution semble la mieux adapté. Quoiqu'il en soit je vais regarder le lien que vous avez fourni

Hors ligne

#5 24-12-2017 09:50:04

Wiwaxia
Membre
Lieu : Paris 75013
Inscription : 21-12-2017
Messages : 58

Re : Polygones et cercle

Nathan.h a écrit :

... Il me semble que votre 2ème solution semble la mieux adaptée ...

La première solution (Ca) est la bonne si pour les (N - 2) autres points (Mk) du nuage l'angle (MiMkMj) dépasse un droit.

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?49 + 66
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums