Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 21-12-2017 17:12:56

Wiwaxia
Membre
Lieu : Paris 75013
Inscription : 21-12-2017
Messages : 38

La bande des 9

Bonjour,

J'ai trouvé par hasard sur un site de programmation l'énoncé d'un exercice relativement ancien, intitulé "la bande des 9" et dont je n'ai trouvé nulle trace sur la Toile. Faute de connaître le niveau de difficulté des éventuelles démonstrations, je poste le sujet sur ce forum.

L'énoncé de l'exercice (non résolu) était ainsi rapporté:
"Si l' on prend 3 nombres (a,b,c) composés chacun de 3 chiffres tels que a + b = c ,
et si les neufs chiffres utilisés sont (1,2,3,4,5,6,7,8,9) alors la somme des chiffres constituant le résultat (soit c) est toujours égale à 18 .
Exemples: 152 + 487 = 639 ; 238 + 419 = 657 .

Construire la solution qui permet de trouver tous les cas c'est à dire (a,b,c )."

L'énoncé m'a paru désagréablement incohérent, en ce qu'il demandait de construire un algorithme sur deux propriétés, dont l'une découle de l'autre, d'une manière vraisemblable mais nullement évidente pour moi.

1°) Je me suis donc lancé dans le codage d'un programme répondant au nouvel énoncé suivant:
(E1): Inventorier tous les triplets d'entiers naturels (a, b, c) inférieurs à 1000, utilisant les neufs chiffres du système décimal à l'exception du zéro, et tels que la somme des deux premiers (a + b) soit égale à (c) .
Vérifier que la somme des chiffres du troisième (c) est constante.

L'algorithme ne présentait pas de difficultés particulières, et a conduit à des résultats conformes:
# Nombre de triplets: Nt = 336    # Somme des chiffres: Smin = Smax = 18 .

2°) Cela m'a conduit à envisager une nouvelle version, plus générale:
(E2): Inventorier tous les triplets d'entiers naturels (a, b, c) inférieurs à 1000, utilisant les neufs chiffres du système décimal à l'exception de l'un d'entre eux, et tels que la somme des deux premiers (a + b) soit égale à (c) .
Vérifier que la somme des chiffres du troisième (c) est constante.

Et là, ô merveilles, sont encore apparus des résultats cohérents:

q   Ntr   Smin = Smax

0     336     18

1     104     13
2     208     17
3     104     12
4     192     16
5       96     11
6     208     15
7     104     10
8     208     14
9     168       9

La somme des chiffres de (c) dépend de la valeur du chiffres proscrit (q); elle est égale à (18 - q/2) lorsque (q) est pair, à (27 - q)/2 sinon.

Quelqu'un a-t-il rencontré quelque part ce problème - ou un énoncé apparenté - et (ou) une indication de démonstration concernant la constance et la valeur de Sc(q) ?
Merci d'avance pour toutes les informations que vous pourrez apporter.

Dernière modification par Wiwaxia (23-12-2017 08:43:17)

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?22 + 21
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums