Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 01-11-2006 15:32:45

Baller12
Invité

Dérivée de la fonction Racine N-ième?????

Est-ce que quelqu'un sait quelle est la dérivée de la fonction racine n-ième?????

#2 02-11-2006 07:33:03

JJ
Invité

Re : Dérivée de la fonction Racine N-ième?????

(racine nième de x) = x^(1/n)
sa dérivée est donc  (1/n) (x^((1/n)-1))
= (1/n) (x^(-(n-1)/n))
= (1/n) (1/racine nième de x)^(n-1)

#3 03-05-2015 10:24:58

Jean Rollin
Invité

Re : Dérivée de la fonction Racine N-ième?????

Merci JJ.

Ta der ligne, je préférerais la voir écrite comme suit:

=    (1/n)  * 1  /  (racine nième de)  x^(n-1).

#4 03-05-2015 11:37:53

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 12 296

Re : Dérivée de la fonction Racine N-ième?????

RE,

Et bien, Jean Rollin, tant qu'à faire,pourquoi ne pas écrire ça comme suit  ?
[tex]\left(\sqrt[n]{x}\right)' = \frac{1}{n}\times \dfrac{1}{\sqrt[n]{x^{n-1}}}[/tex]
N'est-ce pas plus clair ainsi ?

Écrit en utilisant le Code LaTeX.

Formule utilisée :

\left(\sqrt[n]{x}\right)' = \frac{1}{n}\times \dfrac{1}{\sqrt[n]{x^{n-1}}}

qui a été entourée ensuite de balises tex (1ere icône à gauche dans la barre d'outils des messages...) ;-D

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#5 10-01-2016 10:42:30

emira
Invité

Re : Dérivée de la fonction Racine N-ième?????

Soient une fonction u dérivable sur un ensemble I et n un entier strictement positif.

Soit ƒ la fonction définie par f:x\mapsto u(x)^n

Alors ƒ est dérivable sur I et :

Pour tout x\in I,~f '(x) = n.u'(x).u(x)^{n-1}

--------------------------------------------------------------------------------------------------------

[EDIT by Yoshi - Modérateur]
Sans les balises tex et /tex (entre crochets) autour des formules : pas d'affichage (le navigateur ne peut savoir où elles commencent et où elles finissent) mathématique desdites formules

Soit f la fonction définie par [tex]f:x\mapsto u(x)^n[/tex]

Alors f est dérivable sur I et :

[tex]\forall x\in I,~f '(x) = n.u'(x).u(x)^{n-1}[/tex]

Un petit bonjour n'était pas superflu...

Dernière modification par yoshi (10-01-2016 11:15:26)

#6 15-12-2017 17:09:15

Rwaan
Invité

Re : Dérivée de la fonction Racine N-ième?????

Bonsoir..
Euh, svp pouvez vous me donner la dérivée de la fonction √(x+1)ⁿ et celle de la fonction (√(x+1))ⁿ

#7 15-12-2017 18:23:40

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 12 296

Re : Dérivée de la fonction Racine N-ième?????

Bonsoir,

Euh... C'est encore la même méthode :
[tex](\sqrt U)'= \left(U^{\frac 1 2}\right)'=\frac 1 2\times U' \times U^{\frac 1 2-1}=\dfrac{U'}{2\sqrt U}[/tex]

Ici  [tex]U = (x+1)^n[/tex]   et  [tex]U' =n(x+1)^{n-1}[/tex]

D'où [tex]\left(\sqrt{(x+1)^n}\right)'=\dfrac{n(x+1)^{n-1}}{2\sqrt{(x+1)^n}}[/tex]

------------------------------------------------------------------
[tex]\left(U^n\right)'= nU'U^{n-1}[/tex]

Avec [tex]U = \sqrt{x+1}[/tex]  et  [tex]U'=\dfrac{1}{2\sqrt{x+1}}[/tex]

Alors :
[tex]\left(\left(\sqrt{x+1}\,\right)^n\right)'=n \times \dfrac{1}{2\sqrt{x+1}}\times \left(\sqrt{x+1}\,\right)^{n-1}=\dfrac{n \left(\sqrt{x+1}\,\right)^{n-1}}{2\sqrt{x+1}}=\frac n 2\left(\sqrt{x+1}\,\right)^{n-2}[/tex]

Ou autre variante encore
[tex]\left(U^{\frac n 2}\right)'=\frac n 2 U' U^{\frac n 2-1}=\frac n 2 U' U^{\frac{n-2}{2}}=\frac n 2 U'\left(U^{n-2}\,\right)^{\frac 1 2}[/tex]

Avec [tex]U =\sqrt{x+1}[/tex]  et   U'=1

Alors
[tex]\left(\left(\sqrt{x+1}\,\right)^n\right)'=\frac n 2\left(\sqrt{x+1}\,\right)^{n-2}[/tex]


Où est le problème ?

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?29 + 81
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums