Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 14-11-2017 21:38:46

Dattier
Membre
Inscription : 10-09-2017
Messages : 24
Site Web

suite logique : 1 2 3 4...

Salut,

Pourquoi la bonne réponse est 5, et pas 0,  4 ou ... ?

Si on me répond que c'est la solution avec la complexité la plus faible, je répond que non, il y a plus simple, donné toujours 0 comme réponse, quelque soit les nombres avant.

Alors si ce n'est pas une question de complexité, pourquoi 5 est la bonne réponse ?

Merci.


Raisonnement Empirique : A est EC si avec 10 exemples et pas de contre-exemples connus

Hors ligne

#2 14-11-2017 22:47:42

Roro
Membre
Inscription : 07-10-2007
Messages : 563

Re : suite logique : 1 2 3 4...

Bonsoir,

Parce que si tu demandes à 100000 personnes, c'est la réponse que tu auras le plus souvent (et de loin) !

Roro.

P.S. En général, les résultats mathématiques ne sont pas issus de sondages... mais dans ce cas, il ne s'agit pas d'un problème de maths (ni même de "logique").

Dernière modification par Roro (14-11-2017 22:48:14)

Hors ligne

#3 14-11-2017 23:04:04

tibo
Membre actif
Inscription : 23-01-2008
Messages : 943

Re : suite logique : 1 2 3 4...

Salut,

J'avais un prof de math au lycée (waaaahhhh ! ça commence à faire loin !) qui posait le problème suivant :
"Soit $(U_n)_n$ une suite telle que $U_0=1$, $U_1=3$, $U_2=5$, $U_3=7$ et $U_4=9$. Déterminer $U_5$."
Ceux qui répondaient 11 avait faux. Il fallait répondre qu'on ne peut pas savoir.

Sur le fond, je suis plutôt d'accord avec toi. Je ne vois pas pourquoi 5 compléterait mieux la suite commençant par 1, 2, 3, 4, plutôt que n'importe quel réel.
De fait, je déteste les tests de QI où il faut compléter des suites logiques...

Néanmoins, je dois modérer mon propos. On peut comprendre la notion de "suite logique", par comment prolonger la suite de manière à conserver le plus de propriétés.
Il existe une infinité de manière de prolonger une suite ou une fonction, mais très peu permettent de conserver les propriétés intéressantes.


A quoi sert une hyperbole?
----- A boire de l'hypersoupe pardi !

En ligne

#4 14-11-2017 23:11:47

Dattier
Membre
Inscription : 10-09-2017
Messages : 24
Site Web

Re : suite logique : 1 2 3 4...

tibo a écrit :

On peut comprendre la notion de "suite logique", par comment prolonger la suite de manière à conserver le plus de propriétés.

En l'occurrence dans notre exemple quelles sont les propriétés que l'on veut conserver ?


Raisonnement Empirique : A est EC si avec 10 exemples et pas de contre-exemples connus

Hors ligne

#5 14-11-2017 23:13:24

Dattier
Membre
Inscription : 10-09-2017
Messages : 24
Site Web

Re : suite logique : 1 2 3 4...

Roro a écrit :

Parce que si tu demandes à 100000 personnes, c'est la réponse que tu auras le plus souvent (et de loin) !

Cela n'aurait alors rien avoir avec l'intelligence, mais plus le respect d'une norme tacite (intériorisée ou connue)


Raisonnement Empirique : A est EC si avec 10 exemples et pas de contre-exemples connus

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de cette opération? 3*3=

Pied de page des forums