Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 27-10-2017 20:10:10

bib
Membre
Inscription : 23-09-2017
Messages : 187

problème de Cauchy

Bonjour,
la question est de résoudre les problèmes de Cauchy
$$
\begin{cases}
y'+\sqrt{1+x^2} e^{-x} y=0\\
y(0)=0
\end{cases}
$$

$$
\begin{cases}
y'+\sqrt{1+x^2} e^{-x} y=0\\
y(0)=1
\end{cases}
$$

$$
\begin{cases}
y'+\sqrt{1+x^2} e^{-x} y=0\\
y(0)=\sqrt{5}
\end{cases}
$$

Le problème est que je n'arrive pas à calculer $-\displaystyle\int_{x_{0}}^x e^{-s} \sqrt{1+s^2} ds$.
Alors ma question est
1. Comment voir qu'il est impossible de calculer la valeur exacte de $-\displaystyle\int_{x_{0}}^x e^{-s} \sqrt{1+s^2} ds$?
2. C'est quoi le but de la question résoudre les trois problèmes de Cauchy or qu'on ne sait pas calculer l'intégrale?

Voici ce que j'ai essayé de faire. Pour trouver la solution générale de l'équation $y'+ \sqrt{1+x^2} e^{-x} y=0$, on remarque que $y=0$ est une solution de l'équation. On cherche maintenant les solution $y \neq 0$, alors il existe $x_0$ tel que $y(x_0) \neq 0$ et puisque $y$ est continue alors il existe $V \in \mathcal{V}(x_0)$ t.q $\forall x \in V: y(x) \neq 0$. On pose $y(x_0)=y_0 \neq 0$ et on a:
$$
\displaystyle\int_{x_0}^x \dfrac{y'(s)}{y(s)} ds = -\displaystyle\int_{x_0}^x e^{-s} \sqrt{1+s^2} ds
$$
qui implique que la solution générale du problème est de la forme
$$
y(x)= y_0 \exp(-\displaystyle\int_{x_0}^x e^{-s} \sqrt{1+s^2} ds)
$$
où $y_0$ est une constante réelle quelconque.
Maintenant pour chaque problèmes de Cauchy, on a
$y(0)=0$ implique que $y_0  \exp(-\displaystyle\int_0^x e^{-s} \sqrt{1+s^2} ds)=0$ implique que $y_0=0$ donc $y=0$.
et
$y(0)=1$ implique que $y_0  \exp(-\displaystyle\int_0^x e^{-s} \sqrt{1+s^2} ds)=1$ implique que $y_0  = \exp(\displaystyle\int_0^x e^{-s} \sqrt{1+s^2} ds)$
et
$y(0)=\sqrt{5}$ implique que $y_0  \exp(-\displaystyle\int_0^x e^{-s} \sqrt{1+s^2} ds)=\sqrt{5}$ implique que  $y_0= \sqrt{5} \exp(\displaystyle\int_0^x e^{-s} \sqrt{1+s^2} ds)$
C'est une bonne solution?

Dernière modification par bib (27-10-2017 22:11:34)

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de cette opération? 2+2=

Pied de page des forums