Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 21-09-2017 18:23:57

Dattier
Membre
Inscription : 10-09-2017
Messages : 83
Site Web

L'ensemble des énoncés de AP (sous théorie de ZFC) est-il dénombrable?

Salut,

Si on considère l'ensemble des énoncés : [tex](\exists x \in \mathbb N, x=i)_{i \in \mathbb R}[/tex]

on a pas un ensemble d'énoncé dénombrable, non ?

Cordialement.


Raisonnement Empirique : A est exacte si avec 10 exemples et pas de contre-exemples connus

Hors ligne

#2 26-09-2017 17:33:56

Yassine
Membre
Inscription : 09-04-2013
Messages : 1 090

Re : L'ensemble des énoncés de AP (sous théorie de ZFC) est-il dénombrable?

Bonjour,
A mon sens, la question est mal formulée.
Si je comprends bien, tu pose la question sur la cardinalité d'un certain ensemble, mais il faut qualifier cet ensemble.
Normalement, quand on définit un langage, on part des symboles suivants :
- connecteurs : $\wedge$, $\vee$, $\neg$, $\rightarrow$, $\leftrightarrow$
- Quantificateurs : $\forall$, $\exists$
- Une collection infinie (et dénombrable) de variables, qu'on peut noter $v_0$, $v_1$, $v_2$, ...
- Une collection infinie (et dénombrable) de constantes, qu'on peut noter $c_0$, $c_1$, $c_2$, ...
- Des fonctions prenant $m$ arguments (par exemple $Successeur(.)$ est une fonction à 1 argument dans AP)
- Des relations $n$-aires (par exemple, $x=y$ et $x \in y$ sont des relations binaires dans ZF)

Ensuite, on définit des règles permettant de construire des phrases avec ces symboles et aboutir à une théorie.
Avec ces définitions, l'ensemble des phrases qu'on peut constituer (union dénombrable d'ensembles dénombrables) est dénombrable.

Ici, dans ton exemple, la collection des constantes est non dénombrable. Ton titre suggère que tu es dans l'axiomatique de ZFC. Il me semble qu'il y a très peu de constantes pour définir ZFC.


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#3 29-09-2017 07:57:24

Dattier
Membre
Inscription : 10-09-2017
Messages : 83
Site Web

Re : L'ensemble des énoncés de AP (sous théorie de ZFC) est-il dénombrable?

Bonjour,

@Yacine : merci pour ta réponse.

Bonne journée.


Raisonnement Empirique : A est exacte si avec 10 exemples et pas de contre-exemples connus

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?93 + 68
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums