serie numerique et CNS de cauchy (Page 1) / Entraide (supérieur) / Forum de mathématiques - Bibm@th.net

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 19-05-2017 16:40:15

gabriel01
Invité

serie numerique et CNS de cauchy

salut, de nouveau, pouvez vous m'expliquer, svp, pourquoi la somme suivante tend vers 0:
\(\displaystyle lim_{M \rightarrow \infty}\sum_{n=N^2}^{M}{\frac{(-1)^n}{n}}=0,\) dans la solution de l'exercice ils ont ecrit que puisque \(\displaystyle \sum_{n}{\frac{(-1)^n}{n}}\) verifie la CNS de cauchy, alors on obtient cette limite lorsque M tend vers l'infini.

merci

#2 21-05-2017 21:52:28

Fred
Administrateur
Inscription : 26-09-2005
Messages : 4 421

Re : serie numerique et CNS de cauchy

Bonjour,

  Si ton $N$ ne dépend pas de $M$, cela n'a aucune chance de marcher!

Fred.

Hors ligne

#3 21-07-2017 12:10:43

gabriel01
Invité

Re : serie numerique et CNS de cauchy

Salut, pourquoi le N doit dependre de M? et quelle est la relation entre cette dependance et la CNS de cauchy?

#4 21-07-2017 13:12:22

PTRK
Membre
Inscription : 14-12-2016
Messages : 88

Re : serie numerique et CNS de cauchy

Soit \[S(M,N) = \sum_{n=N^2}^M \dfrac{(-1)^n}{n}\]

Supposons que $N$ ne dépende pas de $M$.

On a supposé que la série existe, \[\lim_{M \rightarrow \infty} S(M,N) = 0\] pour tout $N$.

Sachant que $S(M,N) + S(N^2-1,1) = S(M,1)$, on fait tendre M vers l'infini, alors tu obtiens $ 0 + S(N^2-1,1) = 0$ . Soit N=2, alors $ S(N^2-1,1)= -1/1 + 1/2 - 1/3 = -5/6 \not = 0$

On abouti a une contradiction. Donc N doit dépendre de M.

Dernière modification par PTRK (21-07-2017 13:33:03)

Hors ligne

#5 22-07-2017 22:24:17

Gabriel01
Invité

Re : serie numerique et CNS de cauchy

Salut, alors qu'elle est sa relation avec la CNS de cauchy pour la convergence des series?

#6 24-07-2017 08:06:10

PTRK
Membre
Inscription : 14-12-2016
Messages : 88

Re : serie numerique et CNS de cauchy

Peux-tu nous énoncer le principe ?

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer

Les questions suivantes sont faites pour éviter le spam. Si vous voulez ne plus les avoir, inscrivez-vous!

Quel est le résultat de 18+87?

Quel est le 6 ième chiffre de 2422809?

Pied de page des forums

[ Générées en 0.032 secondes, 10 requêtes exécutées - Utilisation de la mémoire : 2.1 MiB (pic d'utilisation : 2.41 MiB) ]