Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 05-07-2017 14:32:24

ajuma
Membre
Inscription : 05-04-2017
Messages : 4

congruence

bonjour

Je chehche à prouver :

a est congru à b modulo n    donc a puissance n est congru à b puissance n modulo n²

des idées, une piste ?

merci d'avance

Isa

Hors ligne

#2 05-07-2017 16:33:16

Yassine
Membre
Inscription : 09-04-2013
Messages : 950

Re : congruence

Bonjour,
Tu pars de $a = b + kn$ et tu calcules $a^n = b^n + ...$ et tu montres que tu peux mettre $n^2$ en facteur dans le deuxième terme.


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#3 05-07-2017 17:01:02

ajuma
Membre
Inscription : 05-04-2017
Messages : 4

Re : congruence

c est ce que j'ai fait :j'arrive à mettre n en facteur mais pas n²

Hors ligne

#4 05-07-2017 17:18:09

ajuma
Membre
Inscription : 05-04-2017
Messages : 4

Re : congruence

à priori c'est bon ca marche

merci

Hors ligne

#5 05-07-2017 17:22:07

Yassine
Membre
Inscription : 09-04-2013
Messages : 950

Re : congruence

$\displaystyle (a+kn)^n = a^n + \sum_{i=1}^n \binom{n}{i} a^{n-i}k^in^i$
$\displaystyle  = a^n + \binom{n}{1} a^{n-1}kn + \left(\sum_{i=2}^n \binom{n}{i} a^{n-i}k^in^{i-2}\right)n^2$

Après, il faut remarquer que $\displaystyle   \binom{n}{1} = n$, et donc que $\displaystyle   \binom{n}{1} a^{n-1}kn = \left( a^{n-1}k\right)n^2$


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#6 06-07-2017 06:41:29

ajuma
Membre
Inscription : 05-04-2017
Messages : 4

Re : congruence

Merci Yassine c'est bien comme cela que j'ai fait

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le troisième mot de cette phrase?

Pied de page des forums