Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 17-04-2017 18:20:53

ade
Membre
Inscription : 13-11-2016
Messages : 6

Primitive

Bonsoir
J'ai essayé de chercher par intégration par partie la primitive de la  fonction qui à u associe exp(u)/(u),mais je n' es pas pu. Aidez moi s'il vous plait !

Hors ligne

#2 17-04-2017 20:39:37

Fred
Administrateur
Inscription : 26-09-2005
Messages : 4 465

Re : Primitive

Bonjour,

  Normal si tu n'as pas réussi. Une primitive de exp(u)/u ne s'écrit pas à l'aide des fonctions usuelles (polynômes, logarithme, exponentielle...)

F.

Hors ligne

#3 18-04-2017 08:28:11

Yassine
Membre
Inscription : 09-04-2013
Messages : 945

Re : Primitive

Bonjour Fred,
Question collatérale : Sais-tu s'il existe un moyen de montrer ce fait, a savoir, pour $f, f_1, \cdots, f_n \in C^\infty(\mathbb{R})$ (les $f_i$ étant les fonctions "usuelles"), $\forall P \in \mathbb{R}[X_1, \cdots, X_n], f \neq P(f_1, \cdots, f_n)$ où $f$ est une fonction donnée ($\displaystyle f(x)=\int_1^x \dfrac{e^t}{t}dt $ dans le cas présent) ?

Dernière modification par Yassine (18-04-2017 12:51:54)


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#4 18-04-2017 20:22:38

Fred
Administrateur
Inscription : 26-09-2005
Messages : 4 465

Re : Primitive

Bonsoir Yassine,

  Oui, cela peut se démontrer (le résultat est dû à Liouville je crois) mais tu imagines bien que ce n'est pas facile. C'est une branche de la théorie de galois différentielle.
L'article suivant contient une preuve d'un théorème général qui doit te donner ce résultat.

Bonne lecture!

Fred.

Hors ligne

#5 19-04-2017 09:05:14

Yassine
Membre
Inscription : 09-04-2013
Messages : 945

Re : Primitive

Merci Fred,
Je vais lire ça avec intérêt.


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Ecrire en lettres le nombre suivant : 2

Pied de page des forums