Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 09-12-2016 14:12:55

ORU
Membre
Inscription : 29-11-2016
Messages : 67

(n-x) et (x) je sèche

Pour tout x, pourquoi si (n-x) et (x) n'ont pas de facteur commun autre que 1 alors (n) est premier?

Dernière modification par ORU (09-12-2016 15:29:12)

Hors ligne

#2 09-12-2016 14:49:33

Yassine
Membre
Inscription : 09-04-2013
Messages : 979

Re : (n-x) et (x) je sèche

$n = 15$, $x=7$
$n-x=8$, $8$ est premier avec $7$, $15$ n'est pas premier.
C'est dans l'autre sens que ça marche, si $n$ est premier, alors $n-x$ et $x$ sont premiers entre eux.


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#3 09-12-2016 15:14:47

ORU
Membre
Inscription : 29-11-2016
Messages : 67

Re : (n-x) et (x) je sèche

Ce que je veux dire c'est pour n=15

15-1=14 ; 1 et 14 n'ont pas de facteur commun
15-2=13 ; 2 et 13 n'ont pas de facteur commun
15-3=12 ; 3 et 12 ont un facteur commun
15-4=11 ; 4 et 11 n'ont pas de facteur commun
15-5=10 ; 5 et 10 ont un facteur commun
15-6=09 ; 6 et 9 ont un facteur commun
15-7=08 ; 7 et 8 n'ont pas de facteur commun
15-8=07 ; 8 et 7 n'ont pas de facteur commun
15-9=06 ; 9 et 6 ont un facteur commun
15-10=5 ; 10 et 5 ont un facteur commun
15-11=4 ;  11 et 4 n'ont pas de facteur commun
15-12=3 ; 12 et 3 ont un facteur commun
15-13=2 ;  13 et 2 n'ont pas de facteur commun
15-14=1 ;  14 et 1 n'ont pas de facteur commun ; Donc 15 n'est pas premier

Et pour faire court, pour n=5

5-1=4 ; 1 et 4 n'ont pas de facteur commun
5-2=3 ; 2 et 3 n'ont pas de facteur commun
5-3=2 ; 3 et 2 n'ont pas de facteur commun
5-4=1 ; 4 et 1 n'ont pas de facteur commun ; Donc 5 et premier

Hors ligne

#4 09-12-2016 17:47:44

ORU
Membre
Inscription : 29-11-2016
Messages : 67

Re : (n-x) et (x) je sèche

J'ai eu la réponse, que j'ai encore du mal à comprendre:
Si n et n−x ont un diviseur commun, n et x ont aussi un diviseur commun puisque (n−x)+x=n (équivalente à x=n−(n−x))

Hors ligne

#5 09-12-2016 18:04:10

Yassine
Membre
Inscription : 09-04-2013
Messages : 979

Re : (n-x) et (x) je sèche

En effet, avec la quantificateur, ça change tout !

Première propriété :
Si $p$ divise divise $a$ et $b$, alors il divise $a+b$ (il suffit d'écrire $a=pk$ et $b=pk'$ pour avoir $a+b=p(k+k')$).
Donc, si $p$ divise $x$ et $n-x$, alors $p$ divise $x+n-x=n$. Et idem dans l'autre sens, si $p$ divise $n$ et $x$ alors il divise $n-x$.
Donc, les diviseurs communs de $x$ et $n-x$ sont exactement les diviseurs communs de $n$ et $x$.

Ton assertion est de dire que $\forall x,  1 < x < n$, $n$ et $x$ n'ont que $1$ comme diviseur commun. Ce qui veut dire que $n$ est premier.

Dernière modification par Yassine (09-12-2016 18:05:28)


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#6 09-12-2016 18:32:24

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 11 390

Re : (n-x) et (x) je sèche

Re,

Supposons que  n et  n-x aient un diviseur commun k.
Alors il existe deux entiers a et b tels que :
[tex]n=k.a[/tex] et [tex]n-x= k.b[/tex]
Dans [tex]n-x[/tex] je remplace n par [tex]k.a[/tex] :
[tex]k.a-x= k.b[/tex]
Je passe [tex]k.a[/tex] dans le deuxième membre :
[tex]-x =-k.a+k.b[/tex]
On change les signes :
[tex]x = k.a-k.b[/tex]
On factorise le 2e membre :
[tex]x=k.(a-b)[/tex]
Cette dernière écriture prouve que x est bien aussi un multiple de k...

Ça te va ?

@+

[EDIT]Ave, Yassine, je n'avais pas vu ta réponse : un coup de tél en plein milieu m'a fait perde du temps et je n'ai pas vérifié...


Arx Tarpeia Capitoli proxima...

Hors ligne

#7 09-12-2016 19:33:47

ORU
Membre
Inscription : 29-11-2016
Messages : 67

Re : (n-x) et (x) je sèche

@Yassine & yoshi
Oui c'est bon j'ai compris merci!

Hors ligne

#8 09-12-2016 19:39:52

ORU
Membre
Inscription : 29-11-2016
Messages : 67

Re : (n-x) et (x) je sèche

Ce qui me tue dans tout ça c'est que j'en conclue que par exemple pour 53:


52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

aucun de ces nombres face à face n'ont de diviseur commun, et que c'est pareil pour des nombres premiers super grand... c'est dingue.

Hors ligne

#9 09-12-2016 20:12:20

Yassine
Membre
Inscription : 09-04-2013
Messages : 979

Re : (n-x) et (x) je sèche

@Yoshi,
J'en conclue que ton coup de fil à duré 28 mn, sacré performance ;-)


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#10 09-12-2016 20:29:19

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 11 390

Re : (n-x) et (x) je sèche

Salut,

Pas tant que ça...
Mais je tape très lentement, avec un clavier (j'en change régulièrement, mais maintenant je vais plutôt chercher des lettres à coller sur les touches) où il manque des lettres (effacées), et circonstance aggravante, je tape avec un seul doigt et je fais énormément de fautes de frappe : l'exploit, c'est d'arriver à produire du texte lisible dans ces conditions...
A ce propos, une blague que je sortais à mes zouaves ; je demandais : vous savez ce que c'est qu'une faute de frappe ?
Alors ils y allaient de leur explication...
Et je leur disais : pas seulement, pas seulement !
Et j'ajoutais devant leurs airs interrogateurs : c'est quand l'un d'entre vous veut frapper son voisin et que ce n'est pas le bon qui prend le coup...

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Ecrire en lettres le nombre suivant : 7

Pied de page des forums