Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 27-10-2017 08:47:54

Tom
Invité

(1/b-1/a)(x-a)-(b-a)(y-1/a)=0

Bonjour dans mon DM je dois simplifier:
(1/b-1/a)(x-a)-(b-a)(y-1/a)=0
Et trouver x+aby-b-a=0
Pouvez-vous m'aider svp?
Merci d'avance

#2 27-10-2017 11:20:38

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 11 386

Re : (1/b-1/a)(x-a)-(b-a)(y-1/a)=0

Bonjour,

[tex]\dfrac 1 b - \dfrac 1 a = \dfrac{a-b}{ab}[/tex] ;  [tex]y-\dfrac 1 a = \dfrac{ay-1}{a}[/tex]

Donc :
[tex]\left(\dfrac 1 b - \dfrac 1 a \right)(x-a)-(b-a)\left(y-\dfrac 1 a\right)=0[/tex]
[tex]\Leftrightarrow[/tex]
[tex]\dfrac{a-b}{ab}(x-a)-(b-a)\dfrac{ay-1}{a}=0[/tex]
Je remplace -(b-a) par +(a-b) et je mets (a-b) en facteur commun :
[tex](a-b)\left(\dfrac{x-a}{ab}+\dfrac{ay-1}{a}\right)=0[/tex]
Pour autant que l'on sache que [tex]a \neq b,\;a\neq 0\text{ et }b \neq 0[/tex] alors on a le droit de simplifier par (a-b) :
[tex]\dfrac{x-a}{ab}+\dfrac{ay-1}{a}=0[/tex]
Là tu remplaces
\dfrac{ay-1}{a} par une fraction équivalente de dénominateur ab et non plus a...
Ensuite tu mets la fraction [tex]\dfrac{1}{ab}[/tex]  en facteur commun :
[tex]\dfrac{1}{ab}(x-a+\cdots)=0[/tex]
Tu termines...


@+


Arx Tarpeia Capitoli proxima...

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de cette opération? 2+2=

Pied de page des forums