Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 12-04-2017 09:43:41

Rygel
Membre
Inscription : 06-04-2017
Messages : 12

Système d'équation sans solution ou infinité

Bonjour à tous,

Je suis tombé en cherchant des systèmes à 2 inconnues "difficile" (pour moi) sur une possibilité que je n'avais pas encore rencontrée :

\begin{cases}3x-7y&=14\\-\frac{6x}{7}+2y&=-3\end{cases}

D'après mes déductions la solution de ce système admet soit aucune solution ou une infinité, le problème est que je ne sais pas si c'est l'un ou l'autre et comment le "prouvé".

P.S. Est-ce qu'il existe une astuce qui permet de voir rapidement qu'on se trouve dans ce cas, car pour celui là avant de comprendre j'ai essayé de substitué/additionné un peu dans tout les sens ?

Merci :)

Hors ligne

#2 12-04-2017 11:17:27

tibo
Membre actif
Inscription : 23-01-2008
Messages : 943

Re : Système d'équation sans solution ou infinité

Bonjour,

Plusieurs méthodes pour montrer cela :


Méthode purement calculatoire : on cherche à résoudre le système (c'est surement ce que tu as fait)
$\left\{\begin{array}{l}3x-7y=14\\-\dfrac{6x}{7}+2y=-3\end{array}\right.\\ \quad\Leftrightarrow\quad
\left\{\begin{array}{l}x=\dfrac{14+7y}{3}\\-\dfrac{6(14+7y}{7\times 3}+2y=-3\end{array}\right.\\ \quad\Leftrightarrow\quad
\left\{\begin{array}{l}x=\dfrac{14+7y}{3}\\-4-2y+2y=-3\end{array}\right.\\ \quad\Leftrightarrow\quad
\left\{\begin{array}{l}x=\dfrac{14+7y}{3}\\-4=-3\end{array}\right.$
Ce qui est impossible donc pas de solution.



On peut aussi voir ce système sous l'éclairage des équations de droite.
Les deux équations du système peuvent s'écrire sons la forme
$\left\{\begin{array}{l}y=\dfrac{3}{7}x-2\\y=\dfrac{6}{7\times 2}x-\dfrac{3}{2}\end{array}\right.$
Ces deux droites ont le même coefficient directeur, donc sont parallèles et non confondues car l'ordonnée à l'origine est différente.
Pas de point d'intersection, pas de solution.



Pour essayer de "prévoir" ça, il faut vérifier que les coefficients ne sont pas proportionnels.
Et là soit on le "voit", mais ce n'est pas toujours évident, notamment ici.

Imagine le système suivant :$\left\{\begin{array}{l}x-3y=4\\3x-12y=-3\end{array}\right.$
Là on voit bien que c'est proportionnel, donc il n'y aura pas de solution (ou une infinité de solution dans le cas où les droites sont confondues).

Si on ne le "voit" pas, on reprend la vielle technique de... collège? primaire? (je ne sais plus quand on voit la proportionnalité) : le fameux produit en croix :
$3\times2=6$
$-\dfrac{6}{7}\times(-7)=6$
C'est bien proportionnel.

Dernière modification par tibo (12-04-2017 11:20:57)


A quoi sert une hyperbole?
----- A boire de l'hypersoupe pardi !

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quelles sont les lettres manquantes? Etes-vous un humain ou un roxxx?

Pied de page des forums