Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 15-03-2016 03:51:42

flucemma
Invité

Suite arithmétique

Bonjour, je voudrais résoudre cette suite arithmétique svp, merci pour votre aide

Soit (Un), une suite arithmétique U0= - 68/3 , r=1/3
Ux=226 et Uy=263

#2 15-03-2016 08:30:39

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 12 135

Re : Suite arithmétique

Bonjour,


Et bien, tu n'as pas dû beaucoup te fatiguer.
Si tu ouvres un livre ou un cahier au chapitre Suites et que tu consultes ce qui concerne les suites arithmétiques tu y verras que
[tex]U_n=U_{n-1}+r[/tex]  et  donc que [tex]U_n=U_0+nr[/tex]
Ici [tex]U_0=-\frac{68}{3}[/tex]  et  [tex]r =\frac 1 3[/tex]
Tu en déduis donc que
[tex]U_x =-\frac{68}{3}+\frac 1 3 x = 226[/tex]
et
[tex]U_y=-\frac{68}{3}+\frac 1 3 y = 263[/tex]

Tu as donc deux petites équations du 1er degré à une inconnue à résoudre (niveau 4e)....

A toi de jouer

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#3 04-03-2018 21:36:00

mariem
Invité

Re : Suite arithmétique

Salut j'ai  besoin de votre aide pour résoudre cette suite géométrique : on a Sn=Uo +U1+...+Un .
Calculer:Uo;U1etU2 sachant que Sn =2^n  _ 1/2  .
Exprimer dans ce cas S n+1 en fonction de n.
Déduire l'expression de (U) en fonction de n.

#4 05-03-2018 09:09:31

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 12 135

Re : Suite arithmétique

Bonsoir,

Ton sujet ne constitue une réponse au sujet traité, c'est un sujet différent. Quel que soit le forum, on y applique une règle immuable un sujet = une discussion.

Ceci posé, il s'agit quand même de Suites.

Toi, qu'as-tu déjà fait ? Je vais te mettre sur la voie.
[tex]S_n[/tex] est une suite géométrique, vraiment ?
Bon, alors allons-y.
[tex]S_n=u_0+u_1+u_2+\cdots+u_n[/tex]
J'en conclus que ;
[tex]S_0=u_0\\
S_1=u_0+u_1\\
S_2=u_0+u_1+u_2[/tex]
Or,
[tex]S_n=2^n-\dfrac 1 2[/tex]
Donc
[tex]S_0=u_0=2^0-\dfrac 1 2[/tex]
A toi, le calcul.
Tu disposes maintenant de $u_0$, tu passes à $u_1$ :
[tex]S_1=2^1-\frac 1 2=u_0+u_1=\,?[/tex]. Je te laisses le calcul
Maintenant, que tu connais la somme [tex]u_0+u_1[/tex] et [tex]u_0[/tex], tu n'as pas besoin de moi pour trouver $u_1$.
A toi de jouer pour $u_2$...

Si [tex]S_n =2^n-\dfrac 1 2[/tex], comment peut bien s'écrire [tex]S_{n+1}[/tex] ?
En remplaçant n par n+1 dans la formule !
.............................
Reviens avec tes résultats et des questions éventuelles...


@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#5 05-03-2018 22:12:01

mariem
Invité

Re : Suite arithmétique

Salut,
Merci d' abord pour le faire plus clair pour moi .J'ai commis une erreur en disant que Sn est  une suite géométrique je voulais dire plutôt que (U) est géométrique et j'ai trouvé ces résultats :
Uo=1/2 ;U1=1 ;U2=2.
S n+1=2^(n+1) _ 1/2
Un=Sn _Sn-1 =2^n-1

#6 06-03-2018 08:18:44

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 12 135

Re : Suite arithmétique

Salut,

c'est bon.
Tu peux vérifier :
[tex]u_0=2^{0-1}=2^{-1}=\dfrac 1 2\\
u_1=2^0 = 1\\
u_2=2^1=2[/tex]

On pouvait se douter que [tex]u_n=2^{n-1}[/tex]
En effet, tu as vu (ou tu ne vas pas tarder à voir) que la somme des termes d'une suite géométrique [tex](u_n)[/tex] de premier terme $u_0$ et de raison q est
[tex]S=u_0\dfrac{1-q^{n+1}}{1-q}[/tex] qu'on peut aussi écrire [tex]S=u_0\dfrac{q^{n+1}-1}{q-1}[/tex]

Examinons le $S_n$ donné :
[tex]S_n=2^{n}-\dfrac 1 2[/tex] si on en reste là, oui... ça ressemble vaguement.

Mais je mets [tex]\dfrac 1 2[/tex] en facteur:

[tex]S_n=\dfrac 1 2 (2^{n+1}-1)[/tex] et là, on se dit que le premier terme pourrait bien être $\dfrac 1 2$ et la raison 2...
Mais où est le dénominateur ? Là : 1 = 2-1
[tex]S_n=\dfrac 1 2\times \dfrac {2^{n+1}-1}{2-1}[/tex]

Maintenant ça colle !

Un petit détail.
Tu as écrit :
S n+1=2^(n+1) -1/2
Un=Sn - Sn-1 =2^n-1

Or la question précédente était :
Exprimer dans ce cas $S_{n+1}$ en fonction de n.
Et la question suivante enchaîne avec ;
(En ?) Déduire l'expression de (U) en fonction de n.
Ce que tu as fait est juste, mais la question Exprimer dans ce cas $S_{n+1}$ en fonction de n. n'a servi à rien...

Je pense que ton prof voulait que tu te serves de $S_n$ qu'il t'a donnée et de $S_{n+1}$  qu'il t'a demandé d'écrire, donc   :
$u_{n+1}=S_{n+1}-S_n =2^{n+1}-\dfrac 1 2- \left(2^n-\dfrac 1 2\right) =2^{n+1}-\dfrac 1 2- 2^n+\dfrac 1 2=2^{n+1} - 2^n =2^n$

Comprends-tu ce que je veux dire ?

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#7 07-03-2018 14:10:25

mariem
Invité

Re : Suite arithmétique

Sault,
Oui, c'est clair. Dans ce cas je vais trouver que Un+1=2^n puis on déduit que Un=2^n-1.
Merci bien pour votre aide.

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?87 - 84
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums