Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 21-01-2016 20:27:46

devil
Membre
Inscription : 24-12-2015
Messages : 81

convergence

Bonjour,
j'ai l'exercice suivant et je peine à conclure.
Soit
[tex]
f_j(x)=
\begin{cases}
-j^2 \quad &x\in ]-1/j,0[\\
j^2 \quad & x \in ]0,1/j[\\
0 \quad & x\notin ]-1/j,0[\cup ]0,1/j[
\end{cases}
[/tex]
La question est de montrer que cette suite [tex](f_j)[/tex] converge dans [tex]\mathcal{D}'(\mathbb{R})[/tex], de définir sa limite et de calculer la dérivée de cette limite.

Tout d'abord,[tex] f_j \in L^1_{loc}[/tex], donc pour tout \varphi in \mathcal{D}, on définie la distribution
[tex]<T,\varphi>=- \displaystyle\int_{-1/j}^0 j^2 \varphi(x) dx + \displaystyle\int_0^{1/j} j^2 \varphi(x) dx
[/tex]
en écrivant le développement de Taylor-Young de [tex]\varphi(x)[/tex] d'ordre 1 au voisinage de 0, on a
[tex]
<T,\varphi> = j^2 [-\displaystyle\int_{-1/j}^0 x \varphi'(\xi_x) dx + \displaystyle\int_0^{1/j} x \varphi'(\xi_x) dx][/tex]
comment finir la suite pour trouver la limite ? Merci par avance.

Dernière modification par devil (21-01-2016 20:28:29)

Hors ligne

#2 21-01-2016 20:59:52

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 035

Re : convergence

Bonjour,

  La formule de Taylor à l'ordre 1 ne te donne pas un résultat assez précis pour conclure. Il faut que tu ailles jusqu'à l'ordre 2.
Il te faudra ensuite démontrer que [tex]j^2\int_0^j x^2\varphi''(\xi_x)dx[/tex] tend vers 0.
Pour cela, il suffit ensuite de majorer [tex]\varphi''(\xi_x)[/tex] par une constante qui ne dépend pas de [tex]x[/tex] pour conclure.

F.

En ligne

#3 21-01-2016 22:58:43

devil
Membre
Inscription : 24-12-2015
Messages : 81

Re : convergence

En utilisant un développement d'ordre 2, on obtient que
[tex]
<T,\varphi>= \varphi'(0) + \dfrac{j^2}{2} (-\displaystyle\int_{-1/j}^0 x^2 \varphi''(\xi_x) dx + \displaystyle\int_0^{1/j} x^2 \varphi''(\xi_x) dx
[/tex]
on a
[tex]
|\displaystyle\int_{-1/j}^0 x^2 \varphi''(\xi_x) dx | \leq M \displaystyle\int_{-1/j}^0 x^2 dx = - M \dfrac{1}{j^2}[/tex]
où [tex]M=\sup_{x \in K} |\varphi''(x)|[/tex], où K est le compact qui contient le support de la fonction test.
1- le moins qui apparaît dans le membre de droite de la dérnière inégalité est bizarre, mais comment l'enlever?
2- on sait que $\varphi$ est continue sur un compact, donc elle est bornée est atteint ses bornes, mais comment justifier que la borne $\sup$ des dérivées de $\varphi$ existe et est atteinte?
Je vous remercie par avance.

Dernière modification par devil (21-01-2016 23:00:03)

Hors ligne

#4 22-01-2016 07:59:57

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 035

Re : convergence

Re,

1- Je ne sais pas d'où vient ta dernière égalité, mais elle est fausse!
2- Les dérivées de [tex]\varphi[/tex] sont aussi continues à support compact.

F.

En ligne

#5 22-01-2016 10:53:44

devil
Membre
Inscription : 24-12-2015
Messages : 81

Re : convergence

Je vois deux écritures possibles:
on a
[tex]\displaystyle\int_{-1/j}^0 x^2 dx = -\dfrac{1}{j^2}[/tex]
1.
[tex]|- \displaystyle\int_{-1/j}^0 x^2 \varphi''(\xi_x) dx| \leq - \displaystyle\int_{-1/j}^0 |x^2 \varphi''(\xi_x)| dx \leq M \displaystyle\int_{-1/j}^0 x^2 dx= M \dfrac{1}{j^2}.[/tex]

2.
[tex]|-\displaystyle\int_{-1/j} x^2 \varphi''(\xi_x) dx| = |\displaystyle\int_{-1/j}^0 x^2 \varphi''(\xi_x) dx| \leq M \displaystyle\int_{-1/j}^0 x^2 dx = - M \dfrac{1}{j^2}[/tex]

Dans la 2ème écriture il y a un - qui gêne, je ne comprend pas où est l'erreur.
Je vous remercie par avance.

Dernière modification par devil (22-01-2016 10:54:48)

Hors ligne

#6 22-01-2016 16:06:21

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 035

Re : convergence

Non! Ton calcul d'intégrale est faux! Voyons!

En ligne

#7 22-01-2016 17:19:18

devil
Membre
Inscription : 24-12-2015
Messages : 81

Re : convergence

Pardon, toutes mes excuses. C'est clair maintenant, je pense que c'est réglé. Merci beaucoup pour votre patience.

Hors ligne

#8 08-02-2016 10:34:42

devil
Membre
Inscription : 24-12-2015
Messages : 81

Re : convergence

Bonjour,
je reviens à cet exercice car j'ai essayé de prendre un peu de recule avec les calculs, mais ça ne va toujours pas.
Si on écrit un développement de Taylor d'ordre 2
[tex]
\varphi(x)=\varphi()+x \varphi'()+\dfrac{x^2}{2}\varphi''(\xi_x), \quad \xi_x \in (0,x).
[/tex]
On a:
[tex]
<f_j,\varphi>= j^2 [- \displaystyle\int_{-1/j}^0 \varphi(0) dx - \varphi'(0) \displaystyle\int_{-1/j}^0 x dx - \displaystyle\int_{-1/j}^0 \dfrac{x^2}{2} \varphi''(\xi_x) dx
[/tex]
[tex]
+ \displaystyle\int_0^{1/j} \varphi(0) dx + \varphi'(0) \displaystyle\int_0^{1/j} x dx + \displaystyle\int_0^{1/j} \dfrac{x^2}{2} \varphi''(\xi_x) dx]
[/tex]
[tex]= j \varphi(0) - j [-\displaystyle\int_{-1/j}^0 \dfrac{x^2}{2} \varphi''(\xi_x) dx + \displaystyle\int_0^{1/j} \dfrac{x^2}{2} \varphi''(\xi_x)dx][/tex]

et en passant à la limite sur j, on trouve n'importe quoi. Que faire dans ce cas?
Je vous remercie par avance pour votre aide.

Dernière modification par devil (08-02-2016 10:35:37)

Hors ligne

#9 08-02-2016 13:13:49

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 035

Re : convergence

Encore une fois devil, revois tes calculs d'intégrale! Il n'y a pas de termes en [tex]\varphi(0)[/tex], mais il y a un terme en [tex]\varphi'(0)[/tex].
Et la majoration des intégrales, on l'a déjà faite avant, cf ton post #5 en tenant compte de l'erreur dans le calcul d'intégrale.

En ligne

#10 08-02-2016 13:26:53

devil
Membre
Inscription : 24-12-2015
Messages : 81

Re : convergence

Ce qui me pose problème n'est pas la majoration des deux dernières intégrales, ça c'est reglé, mais ce sont les deux premiers termes qui me pose problème, je n'arrête pas de trouver le même résultat. Savez vous où est le problème dans mon calcul? S'il vous plaît.

Hors ligne

#11 08-02-2016 13:39:14

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 035

Re : convergence

Je ne vais pas faire le boulot à ta place! Je pense que tu sais intégrer une constante et x sur les intervalles [0,1/j] et [-1/j,0].
Tu as 4 intégrales à calculer. Je veux bien que tu écrives le résultat de ces 4 intégrales et que je vérifie...

F.

En ligne

#12 08-02-2016 17:52:52

devil
Membre
Inscription : 24-12-2015
Messages : 81

Re : convergence

Bon, je pense que je m'en sors enfin (j'avais fait une erreur de signe).
[tex]
<f_j,\varphi>=j^2[-\displaystyle\int_{-1/j}^0 \varphi(0) dx - \varphi'(0) \displaystyle\int_{-1/j}^0 x dx - \dfrac{1}{2} \displaystyle\int_{-1/j}^0 x^2 \varphi''(\xi_x) dx
+ \displaystyle\int_0^{1/j} \varphi(0) dx + \varphi'(0) \displaystyle\int_0^{1/j} x dx + \dfrac{1}{2} \displaystyle\int_0^{1/j} x^2 \varphi''(\xi_x) dx].
[/tex]
On a:
[tex]- \displaystyle\int_{-1/j}^0 \varphi(0) dx = -\dfrac{\varphi(0)}{j}[/tex]

[tex]\displaystyle\int_0^{1/j} \varphi(0) dx = \dfrac{\varphi(0)}{j}[/tex]

[tex]- \varphi'(0) \displaystyle\int_{-1/j}^0 x dx = \dfrac{\varphi'(0)}{2 j^2}[/tex]

[tex]\varphi'(0) \displaystyle\int_0^{1/j} x dx = \dfrac{\varphi'(0)}{2 j^2}[/tex]
Donc
[tex]
<f_j,\varphi>= \varphi'(0) + \dfrac{j^2}{2} [- \displaystyle\int_{-1/j}^0 x^2 \varphi''(\xi_x) dx + \displaystyle\int_0^{1/j} x^2\varphi''(\xi_x) dx].
[/tex]
Il nous reste à regarder
[tex]\lim_{j \to +\infty} j^2 [\displaystyle\int_{-1/j}^0 x^2 \varphi''(\xi_x) dx + \displaystyle\int_0^{1/j} x^2 \varphi''(\xi_x) dx].[/tex]

On a:

[tex]
|-\displaystyle\int_{-1/j}^0 x^2 \varphi''(\xi_x) dx| \leq M \dfrac{1}{3 j^3}
[/tex]
et
[tex]
|\displaystyle\int_0^{1/j} x^2 \varphi''(\xi_x) dx| \leq M \dfrac{1}{3 j^3}.
[/tex]
Ainsi, ce dernier terme tend vers 0 lorsque [tex]j \to +\infty.[/tex]
Ainsi, on a:
[tex]
\lim_{j \to +\infty} <f_j,\varphi> = \varphi'(0) = <\delta,\varphi'> = - <\delta',\varphi>
[/tex]
Donc [tex]f_j \to -\delta'[/tex] dans [tex]\mathcal{D}'(\mathbb{R}).[/tex]

2. Pour la question: déterminer la dérivée de la limite, on a:
[tex]<(-\delta')',\varphi> = <-\delta',\varphi'> = <\delta,\varphi''>=\varphi''(0)= \delta''.[/tex]

Tout est ok? S'il vous plaît.
Je vous remercie pour votre aide.

Hors ligne

#13 08-02-2016 19:18:35

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 035

Re : convergence

Cela a l'air correct.

En ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
soixante plus cinquante cinq
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums