Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 07-12-2019 09:52:45

ccapucine
Membre
Inscription : 19-05-2018
Messages : 112

Gradient

Bonjour
je suis un peu perdue dans mes calculs, j'espère que quelqu'un pourra m'aider.
On pose
$$
u^{J}(x,t)= \left(\sum_{j=1}^J (\epsilon^2 \omega)^j f_j\left(\dfrac{x}{\epsilon}\right)\right)v(x,t)
$$
définie sur $\mathbb{R}^n \times \mathbb{R}_+$.
Je souhaite écrire correctement l'expression de $c \cdot \nabla u^{J}$, où $c$ est un vecteur constant de $\mathbb{R}^n$.
J'ai dérivé comme une composé mais je ne sais pas très bien où placer le $c$.
Merci d'avance.

Dernière modification par ccapucine (07-12-2019 09:55:49)

Hors ligne

#2 07-12-2019 20:18:18

Roro
Membre régulier
Inscription : 07-10-2007
Messages : 765

Re : Gradient

Bonsoir,

Commence par calculer $\nabla u^J$, et ensuite tu fais le produit scalaire avec le vecteur $c$.
Ou est la difficulté ? Qu'est ce qui te gène ?

Roro.

Dernière modification par Roro (07-12-2019 20:18:46)

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
soixante dix-huit plus quatre-vingt huit
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums