Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 07-09-2019 18:29:46

QuentinFrisquie
Membre
Inscription : 07-09-2019
Messages : 2

Petit devoir

Bonjour,

Je n'arrive pas à cela

Ont connait l'angle aigu tel que sina = 0,3 donner une valeur de cosa

Hors ligne

#2 07-09-2019 19:25:38

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 14 940

Re : Petit devoir

Salut,

Il y a une relation fondamentale entre sin a et cos a : $\sin^2 a +\cos^2 a =1$
Elle se démontre en passant par un triangle rectangle.
Je trace un angle aigu quelconque de valeur a quelconque et j'appelle A le sommet de cet angle qui vaut a.
Sur l'un des côtés de l'angle aigu, je place un point B.
Je trace la perpendiculaire à [AB) passant par B. Elle coupe l'autre côté en C.
J'ai donc un  triangle ABC rectangle en B  et je peux donc écrire :
$\sin \hat A=\dfrac{BC}{AC}$  donc  $\sin^2 \hat A=\dfrac{BC^2}{AC^2}$

$\cos \hat A=\dfrac{AB}{AC}$ donc  $\cos^2 \hat A=\dfrac{AB^2}{AC^2}$
On en déduit :
$\sin^2 \hat A + \cos^2 \hat A =\dfrac{BC^2}{AC^2}+\dfrac{AB^2}{AC^2}=\dfrac{BC^2+AB^2}{AC^2}$

Et comme le triangle ABC est rectangle en B, alors d'après le théorème de Pythagore : $BC^2+AB^2=AC^2$

Donc, on écrit : $\sin^2 \hat A + \cos^2 \hat A =\dfrac{BC^2+AB^2}{AC^2}=\dfrac{AC^2}{AC^2}=1$

Choisis n'importe quel angle aigu,
si ta calculette est réglée en degrés, alors choisis  $0\leqslant \hat A\leqslant 90°$
si ta calculette est réglée en radians, alors choisis  $0\leqslant \hat A\leqslant \dfrac{\pi}{2}$ sachant que $\pi\approx 3.1416$ à $10^{-4}$

Et tu enchaînes les calculs comme ça (exemple en degrés) :
[tex](\sin {18})^2 +(\cos{18})^2\;=[/tex]
tu ne fais pas de calculs intermédiaires, tu enchaînes les calculs sur la même ligne, tu mets bien les parenthèses et seulement à la fin, tu appuies sur + ou EXE (ça dépend des marques) et tu verras que tu obtiens 1.

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#3 07-09-2019 21:51:17

QuentinFrisquie
Membre
Inscription : 07-09-2019
Messages : 2

Re : Petit devoir

D'accord et ducou c'est quoi la réponse :)

Hors ligne

#4 08-09-2019 07:57:14

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 14 940

Re : Petit devoir

Bonjour,

Du coup, ta réponse me laisse perplexe...
En quelle classe es-tu donc ?
Parce que ta réponse me donne à pense que tu n'as rien compris et que tu n'as jamais entendu parler de cette formule (elle faisait partie du programme de 3e)...
On va faire autrement.
Je reprends mon triangle rectangle ABC rectangle en B.
Tu vas le construire avec AC = 10 et BC = 3.
pourquoi ?
Parce que :
$\sin \hat A=\dfrac{BC}{AC}=0,3  =\dfrac{3}{10} $ 

Ce serait vrai avec n'importe quel couple de valeurs multiples de 3 et 10  : 3,6 et 12 ; 4,5 et 15  ;  6 et 20... pourvu que leur quotient soit 0,3...
Bref, c'est toujours vrai...

Trace un demi-cercle de diamètre [AC] avec AC= 10 cm
Du point C, tu traces un arc de cercle de rayon 3 cm.
Il recoupe le cercle en B.

Tu traces ton triangle : il est rectangle en B (tu vois pourquoi ?)
Avec le théorème de Pythagore, tu calcules AB. tu gardes la valeur exacte qui sera $\sqrt {..}$
Maintenant que tu connais AB, tu sais que dans ce triangle : $\cos \hat A=\dfrac{AB}{AC}=\dfrac{\sqrt {..}}{10}$
valeur exacte.
Ensuite, tu peux en donner une valeur approchée..

N-B
Si tu n'es pas satisfait parce que ci-dessus, j'ai utilisé des valeurs précises et que ce n'est donc qu'un exemple (même si le résultat est le bon, on peut refaire  la même chose en partant de $\sin \hat A=\dfrac{BC}{AC}=0,3$
Et
1. en tirer $BC=\dfrac{3}{10}AC$
2. calculer AB² en fonction de AC² : $AB^2 = AC^2-\dfrac{9}{100}AC^2 =AC^2\left(1-\dfrac{9}{100}\right)$
3. en déduire $AB = \sqrt{AC^2\left(1-\dfrac{9}{100}\right)}=AC\sqrt{\left(1-\dfrac{9}{100}\right)}$ (à toi les calculs..)

4. et arriver à  $\cos \hat A=\dfrac{AB}{AC}=\dfrac{AC\sqrt {..}}{AC}=\sqrt {..}$

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

Pied de page des forums