Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 30-06-2019 15:58:21

Anonymos
Membre
Inscription : 29-06-2019
Messages : 3

Probabilités et logique

Bonjour,

Au cours d'un échange, un jeune m'a écrit (la flèche => étant l'implication logique) :

Au sujet des probabilités conditionnelles bayésienne :

Tu affirmes cela :
P(B => A) = P(A => B)*P(A)/P(B)

Sauf que la formule de Bayes officielle c'est :
P(A|B) = ( P(B|A) x P(A) ) / P(B) 

Ayant inversé B et A ta formule aurait dû être :
P(B => A) = ( P(A => B) x P(B) ) / P(A)

Tu avais (semble t'il) oublié d'inverser les valeurs A et B sur la fin de la formule ;)

Pour moi, cette réponse est tout à fait absurde et dénote une incompréhension profonde des maths. Si A et B sont deux propositions, P(A => B) - ou probabilité que si A est vraie alors B est vraie - est par définition la probabilité P(B | A) - ou probabilité de B sachant A. De même que P(B => A) est la probabilité P(A | B). "Ma" formule est donc totalement correcte : c'est une simple réécriture "logique" de la formule de Bayes. Mon interlocuteur semble y voir seulement un alignement superficiel de lettres au lieu de chercher à comprendre le sens de la formule. Que répondrais-tu à son argument (voir citation) ?

Merci d'avance.

Hors ligne

#2 02-07-2019 21:27:28

Anonymos
Membre
Inscription : 29-06-2019
Messages : 3

Re : Probabilités et logique

Bonsoir,

Il y a quelqu'un sur ce forum ??! Pas possible...

Note pour les imbéciles : ma question n'est pas piégée !

Hors ligne

#3 03-07-2019 06:49:01

freddy
Membre chevronné
Lieu : Paris
Inscription : 27-03-2009
Messages : 6 573

Re : Probabilités et logique

Salut et merci pour les imbéciles !

Ta question n'a pas trop de sens, tu inventes une notation inconnue a priori, alors on s'abstient d'y répondre et de rentrer dans le débat.
Si tu veux bien reformuler ton problème, on s'y penchera, sinon, longue route à toi !


More Majorum ... ad Unum !

Hors ligne

#4 03-07-2019 07:08:30

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 245

Re : Probabilités et logique

Bonjour,

  Je suis plutôt d'accord avec Freddy. Pour moi, l'écriture $P(A\implies B)$ n'a aucun sens.
Lorsqu'on fait des probabilités, on a un univers $\Omega$, muni d'une probabilité, et on calcule la probabilité
d'événements, c'est-à-dire de parties de $\Omega$. Lorsqu'on calcule $P(A)$, $A$ est donc un ensemble.

La probabilité conditionnelle $P(A|B)$, qu'on note aussi parfois $P_B(A)$ pour souligner qu'il s'agit d'une probabilité,
est définie par $P(A|B)=P(A\cap B)/P(B)$.

Tu parles de $P(A\implies B)$. Mais $A\implies B$ n'est pas un événement (un ensemble), c'est une proposition, qui est ou vraie ou fausse. Cela n'a donc aucun sens d'écrire $P(A\implies B)$, à moins de le définir comme une autre notation de $P_A(B)$.

F.

Hors ligne

#5 05-07-2019 09:27:50

D_john
Invité

Re : Probabilités et logique

Salut,

Anonymos a écrit :

...
Si A et B sont deux propositions, P(A => B) - ou probabilité que si A est vraie alors B est vraie - est par définition la probabilité P(B | A) - ou probabilité de B sachant A. De même que P(B => A) est la probabilité P(A | B). "Ma" formule est donc totalement correcte : c'est une simple réécriture "logique" de la formule de Bayes. Mon interlocuteur semble y voir seulement un alignement superficiel de lettres au lieu de chercher à comprendre le sens de la formule. Que répondrais-tu à son argument (voir citation) ?

Merci d'avance.

En logique des propositions, on sait que :

[tex] A \Rightarrow B \qquad \equiv \qquad \overline{A} \vee B [/tex]

Pour donner un sens à la question, on peut facilement admettre que cette logique s’applique aussi aux événements.

On a donc :
[tex] \mathbb{P} (A \Rightarrow B ) = \mathbb{P} (\overline{A} \vee B) = \mathbb{P} (\overline{A}) + \mathbb{P} (A \wedge B) [/tex]
Or, par définition :
[tex] \mathbb{P} (A \wedge B) = \mathbb{P} (A \mid B) .\mathbb{P} (B) [/tex]
D’où :
[tex] \mathbb{P} (A \Rightarrow B ) = \mathbb{P} (\overline{A}) + \mathbb{P} (A \mid B) .\mathbb{P} (B) [/tex]
… formule quand-même assez différente de ce que "tu" poses comme une vérité de bon sens !

Il va sans dire (mais je le dis pour les imbéciles) que "ta" simple réécriture "logique" de la formule de Bayès (avec des implications) laisse à désirer...

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
vingt sept plus huit
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums