Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 22-04-2019 13:33:42

MarinePTSI
Membre
Inscription : 22-04-2019
Messages : 3

Espaces vectoriels avec des fonctions

Bonjour,
Actuellement en classe de prépa PTSI, mon professeur de mathématiques m'a demandé de résoudre cet exercice :

Soient a et b 2 nombres réels tels que a<b. Soit C l'ensemble des fonctions constantes de [a;b] dans R. Soit H={f [smb]appartient[/smb] C([a;b];R), l'intégrale de a à b de f(t) dt  =0}


1. Montrer que C est un sous-espace vectoriel de C([a;b];R) de dimension finie, on en donnera une base et une dimension.

J'ai réussi à montrer que C est un sous-espace vectoriel en montrant que la fonction nulle appartient bien à C et en montrant la stabilité des lois par combinaison linéaire.

En revanche je n'ai aucune idée pour démontrer la dimension finie ainsi que d'en déterminer une en plus d'une base.


2. Montrer que H est un sous espace vectoriel de C([a;b];R)


J'ai procédé par la même méthode que le début de la question 1 en utilisant la linéarité de l'intégrale.


3.  Montrer que C([a;b];R)= somme directe de C et de H


Cela revient à dire que C et H sont supplémentaires et tout d'abord de montrer que C inter H est nul mais je ne vois pas comment procéder pour conclure.


Je vous remercie d'avance pour votre réponse et votre aide :)

Hors ligne

#2 22-04-2019 14:46:22

Roro
Membre régulier
Inscription : 07-10-2007
Messages : 695

Re : Espaces vectoriels avec des fonctions

Bonjour,

Quelques indications :

1) Si tu prends deux fonctions non nulles de C, peux-tu montrer qu'elles sont liées ?

3) La fonction $f-\int_a^b f$ est toujours de moyenne nulle.

Dis-moi si cela te permet d'avancer !

Roro.

Hors ligne

#3 22-04-2019 16:31:48

MarinePTSI
Membre
Inscription : 22-04-2019
Messages : 3

Re : Espaces vectoriels avec des fonctions

Bonjour Roro, merci beaucoup pour votre réponse!

J'ai essayé d'avancer sur l'exercice pour la question 1 j'ai ceci :

Démontrons tout d'abord que C est un sous-espace vectoriel de C([a;b],R) :

-Montrons que la fonction nulle appartient bien à C :

La fonction nulle est une fonction qui associe la valeur 0 pour tout t qui appartient à [a;b] de plus pour tout t qui appartient à [a;b] f'(t)=0

-Montrons que pour lamba qui appartient à R, lambda*f appartient à C

Le produit d'une fonction constante avec un scalaire donne une fonction constante.

- Soit g qui appartient à C montrons que f+g appartient à C

(f+g)'(t)=f'(t)+g'(t) = 0 par supposition

C est donc un sev

Montrons que la fonction à valeur constante 1 est une base de C

Démontrons que{ f1, t-->1} est une famille génératrice et une famille libre :


En effet cette famille est génératrice car on peut obtenir une fonction constante qui C par combinaison linéaire (en multipliant par )

A la fois elle est libre car pour que  la combinaison linéaire avec la fonction constante à valeur 1 fasse 0, il faut obligatoirement que =0.

ainsi j'en déduis que la base {f1} est une base qui comporte 1 élément ainsi toutes les autres bases comportent le même nombre d'éléments et donc la dimension de C est 1.

Mais je ne sais pas si cela pourrait-être correct ou non

Hors ligne

#4 22-04-2019 21:17:13

Roro
Membre régulier
Inscription : 07-10-2007
Messages : 695

Re : Espaces vectoriels avec des fonctions

Bonsoir,

C'est correct pour cette première question : le sous-espace $C$ est de dimension $1$; une base est (par exemple) formée par la fonction $f:x\mapsto 1$.

Pour la seconde question, tu avais déjà la bonne idée (linéarité de l'intégration).

Et pour la question 3 ?

Roro.

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
vingt trois plus quatre-vingt dix-huit
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums