Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 04-01-2019 22:59:58

ccapucine
Membre
Inscription : 19-05-2018
Messages : 96

edo

Bonjour
1- dans la résolution de l'équation de Bernoulli, on suppose que $y$ est strictement positive pour diviser les deux membres de l'équation par $y^m$. Mais $y$ est inconnue, donc est ce qu'on a bien le droit de supposer que $y$ est strictement positif?
2- Dans ce cas si on a une équation de la forme $y'=y^2$ est ce qu'il est correcte que, pour la résoudre on suppose que $y \neq 0$?

Bien cordialement

Hors ligne

#2 05-01-2019 08:54:53

Black Jack
Membre
Inscription : 15-12-2017
Messages : 113

Re : edo

Bonjour,

2)
Si on suppose y différent de 0, on arrive à une équation à variables séparables dont les solutions sont y = -1/(x + K).
Avec ces solutions, y n'est jamais nul ... et donc pas de problème, ces solutions conviennent.

Cela ne signifie pas qu'on doit oublier le cas y = 0, il n'est pas possible avec les solutions y = -1/(x+K), par contre, la fonction nulle est aussi solution de l'équation différentielle.

Les solutions de y' = y² sont donc :

y(x) = 0
et
y(x) = -1/(x+K)

Cela c'est écrit avec mes mots de non matheux.

Hors ligne

#3 05-01-2019 09:17:15

Roro
Membre régulier
Inscription : 07-10-2007
Messages : 738

Re : edo

Bonjour,

Avec des mots de "matheux" :

$\bullet$ La fonction nulle y=0 est solution de ton équation $y'=y^2$ (c'est aussi le cas pour les équations de Bernoulli).

$\bullet$ D'après le théorème de Cauchy-Lipschitz (dont les hypothèses sont facilement vérifiables ici), si une solution de $y'=y^2$ s'annule en un point $x_0\in \mathbb R$ alors c'est forcément cette solution nulle $y=0$. Ainsi, les autres solutions ne s'annulent pas et tu peux faire ton raisonnement en divisant par $y$.

Roro.

Dernière modification par Roro (05-01-2019 09:17:55)

Hors ligne

#4 05-01-2019 09:43:58

ccapucine
Membre
Inscription : 19-05-2018
Messages : 96

Re : edo

Donc si je comprends bien il faut impérativement étudier l'existence et l'unicité de la solution avant de pouvoir diviser sur $y^2$.
Pour Bernoulli on divise sur $y^m$ quelque soit $x$ ou bien sur un voisinage $V$ où $y^m$ ne s'annule pas?

Bien cordialement

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
soixante seize moins treize
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums