Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 30-04-2018 21:29:41

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 033

Les caméléons

Bonjour,

  L'histoire se passe sur une ile déserte. Enfin, déserte, pas tout à fait. Quarante-cinq caméléons vivent sur cette ile. Ce sont des caméléons un peu étranges qui, comme tous les caméléons, aiment à changer de couleur. Il y en a des bleus, des jaunes, des verts. Comme tous les caméléons, ils aiment changer de couleur. Ainsi, quand deux caméléons se rencontrent, s'ils possèdent déjà la même couleur, rien ne se passe. Mais si deux caméléons de couleurs différentes se rencontrent, alors ils prennent la troisième couleur.
  Lorsque je suis arrivé sur cette île déserte, il y avait 13 caméléons verts, 15 caméléons jaunes, 17 caméléons bleus. Est-ce qu'il est possible que tous les caméléons prennent la même couleur?

Fred.

PS: D'après Au fil des maths, le Bulletin de l'APMEP.

Hors ligne

#2 08-05-2018 23:06:47

Wiwaxia
Membre
Lieu : Paris 75013
Inscription : 21-12-2017
Messages : 407

Re : Les caméléons

Bonjour,

Supposons qu'il y ait sur l'île à une date donnée (a, b, c) caméléons des couleurs respectives (A, B, C), et que dans l'intervalle de temps qui suit:
# (x) caméléons de couleur (B) rencontrent (x) caméléons de couleur (C): chacun des effectifs (b, c) diminue de (x), tandis que celui de la tierce couleur (A) augmente de (2x);
# de même (y) animaux de couleur (C) rencontrant un partenaire de couleur (A), les effectifs correspondants (c, a) diminuent de (y), tandis que celui de couleur (B) augmente de (2y);
# et enfin (z) animaux de couleur (A) rencontrant un partenaire de couleur (B), les effectifs correspondants (a, b) diminuent de (z), tandis que celui de couleur (C) augmente de (2z).

On trouve désormais (a', b', c') caméléons de couleur (A, B, C), effectifs dont les valeurs vérifient les relations:
(1): a' = a + 2x - y - z ,
(2): b' = b + 2y - z - x ,
(3):c' = c + 2z - x - y ,
système d'équations linéaires non indépendantes puisque l'effectif total doit rester constant:
S = a' + b' + c' = a + b + c .

Si de plus il ne subsiste plus qu'une seule couleur (A), alors a' = a + b + c tandis que les deux autres termes sont nuls: b' = c' = 0 ;
il vient dans ces conditions:
(1a): y + z = 2x - (b + c) ,
(2a): 2y - z = x - b ,
(3a): 2z - y = x - c ,
système d'équations à une indétermination dans lequel la première est la somme des deux suivantes, et dont la résolution conduit aux expressions de (y) et (z):
(2b): y = x - (2b + c)/3 ,
(3b): z = x - (b + 2c)/3 .
Les résultats concernant des variables entières, et les sommes (2b + c , b + 2c) n'étant jamais divisibles par 3 compte tenu des valeurs envisageables - 13, 15 ou 17 - il n'y a pas de solution au problème posé.

Il faudrait pour cela que deux au moins des trois données soient multiples de 3 .

PS: Pour reprendre un peu mieux la conclusion: les calculs précédents débouchent sur:
(2c): 3(y - x) = (2b + c) ,
(3c): 3(z - x) = (b + 2c) ,
soit encore:
(2d): 2b + c = 0 (Mod 3) ,
(3d): b + 2c = 0 (Mod 3) ,
conditions qui ne sont jamais réalisées simultanément sur le jeu des données (13, 15 ou 17).

Dernière modification par Wiwaxia (09-05-2018 10:06:38)

Hors ligne

#3 09-05-2018 18:41:01

tibo
Membre expert
Inscription : 23-01-2008
Messages : 1 097

Re : Les caméléons

Salut,

Une solution géométrique

On se place dans $\mathbb{R}^3$.
Un point $A(x,y,z)$ de coordonnées entières représente la situation où $x$ est le nombre de caméléons bleus, $y$ les jaunes et $z$ les verts.

On considère
* $A_0(x_0,y_0,z_0)$ la situation de départ et $N=x_0+y_0+z_0$,
* $\overrightarrow{u}$, $\overrightarrow{v}$ et $\overrightarrow{w}$ les vecteurs tels que $\overrightarrow{u}\left(\begin{array}{c}2\\-1\\-1\end{array}\right)$, $\overrightarrow{v}\left(\begin{array}{c}-1\\2\\-1\end{array}\right)$ et $\overrightarrow{w}\left(\begin{array}{c}-1\\-1\\2\end{array}\right)$, représentant la rencontre de deux caméléons de couleurs différentes,
* $\mathcal{E}$ l'ensemble des points que l'on peut atteindre par translations successives de vecteurs $\overrightarrow{u}$, $\overrightarrow{v}$ ou $\overrightarrow{w}$ en partant de $A_0$. Il suffit de prendre $\mathcal{E}\cap\mathbb{N}^3$ pour obtenir l'ensemble des situations possibles.

Les vecteurs $\overrightarrow{u}$, $\overrightarrow{v}$ et $\overrightarrow{w}$ sont coplanaires dans le plan $\mathcal{P}$ d'équation $x+y+z=N$.
On a donc $\mathcal{E}=\{A\in\mathcal{P}\ /\ A=A_0+\alpha\overrightarrow{u}+\beta\overrightarrow{v}\ avec\ (\alpha,\beta)\in\mathbb{Z}^2\}$.

On faut donc savoir si $B(N,0,0)$, $C(0,N,0)$ ou $D(0,0,N)$ appartient à $\mathcal{E}$.
Cela fait trois petits systèmes à résoudre :
$B=A_0+\dfrac{z_0-y_0}{3}\overrightarrow{u}+\dfrac{y_0+2z_0}{3}\overrightarrow{v}$,
$C=A_0+\dfrac{z_0-x_0}{3}\overrightarrow{u}+\dfrac{x_0+2z_0}{3}\overrightarrow{v}$,
$D=A_0+\dfrac{-2x_0-y_0}{3}\overrightarrow{u}+\dfrac{-x_0-2y_0}{3}\overrightarrow{v}$.

En remplaçant $x_0$, $y_0$ et $z_0$ par les valeurs de l'énoncé, on obtient des coefficients non entiers.
Donc ce n'est pas possible.


A quoi sert une hyperbole?
----- A boire de l'hypersoupe pardi !

Hors ligne

#4 11-05-2018 15:57:47

freddy
Membre chevronné
Lieu : Paris
Inscription : 27-03-2009
Messages : 7 457

Re : Les caméléons

Salut,

depuis le début, on pressent que ça tourne autour de l'imparité de 45, mais faut bien s'en servir.

Une idée : supposons, sans perte de généralité, que, à chaque instant, les caméléons se croisent par leur numéro d'ordre dans la couleur. Les 1 avec les 1, etc ...
Quand ils se confusionnent, ils prennent les numéros qui suivent ceux de la couleur de la tranformation. Si le 1 V et le 1 J se croisent, il deviennent les numéros B 18 et 19.

Supposons qu'on observe 45 B. Ça signifie qu'on en avait la moitié en V et l'autre moitié en J, ce qui est impossible puisqu'on ne peut pas avoir une moitié vivante de caméléon.

Fred ?


De la considération des obstacles vient l’échec, des moyens, la réussite.

Hors ligne

#5 11-05-2018 17:33:46

freddy
Membre chevronné
Lieu : Paris
Inscription : 27-03-2009
Messages : 7 457

Re : Les caméléons

Non, ce n'est pas terrible, car je ne tiens pas compte des données initiales du problèmes.

les deux autres preuves sont meilleures !


De la considération des obstacles vient l’échec, des moyens, la réussite.

Hors ligne

#6 11-05-2018 21:55:57

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 033

Re : Les caméléons

Hello,

  Bravo à Wiwaxia et à Tibo, pour des preuves à la présentation différente, mais au final très proches. J'avais effectué le même raisonnement qu'eux, même si je le trouve un poil décevant (j'aurai préféré un pur raisonnement arithmétique).

Fred.

Hors ligne

#7 12-05-2018 07:59:42

freddy
Membre chevronné
Lieu : Paris
Inscription : 27-03-2009
Messages : 7 457

Re : Les caméléons

Fred a écrit :

Hello,

  Bravo à Wiwaxia et à Tibo, pour des preuves à la présentation différente, mais au final très proches. J'avais effectué le même raisonnement qu'eux, même si je le trouve un poil décevant (j'aurai préféré un pur raisonnement arithmétique).

Fred.

Salut,

oui, je pense un peu comme toi, dommage !


De la considération des obstacles vient l’échec, des moyens, la réussite.

Hors ligne

#8 15-05-2018 22:53:46

Zorglub
Membre
Inscription : 09-02-2017
Messages : 6

Re : Les caméléons

Bonjour

Lorsqu’on calcule la population de chaque type avec un modulo 3, on se rend compte qu’avec les données initiales les valeurs sont toutes différentes.  Montrons que si les populations modulo 3 sont

a=0   b=1   c=2

alors, suite à la prochaine rencontre, les populations seront à nouveau toutes différentes, et nécessairement égales à

a’ = 2   b’ = 0   c’ = 1

En effet,

    si A est de la rencontre alors a’ = (a-1)mod3 = 2
    si A est n’est pas de la rencontre alors a’ = (a+2)mod3 = 2

    si B est de la rencontre alors b’ = (b-1)mod3 = 0
    si B est n’est pas de la rencontre alors b’ = (b+2)mod3 = 0

    si C est de la rencontre alors c’ = (c-1)mod3 = 1
    si C est n’est pas de la rencontre alors c’ = (c+2)mod3 = 1

Il est donc impossible que deux des populations soient à 0.

Hors ligne

#9 16-05-2018 07:57:49

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 033

Re : Les caméléons

Excellent!

Hors ligne

#10 22-05-2018 09:58:59

Wiwaxia
Membre
Lieu : Paris 75013
Inscription : 21-12-2017
Messages : 407

Re : Les caméléons

Bonjour,

freddy a écrit :

... depuis le début, on pressent que ça tourne autour de l'imparité de 45, mais faut bien s'en servir ...

On peut effectivement envisager une généralisation de l'énoncé, afin de parvenir à une meilleure compréhension du problème.

Tout tient aux relations liées à l'existence d'une solution:
(2d): 2b + c = 0 (Mod 3) ,
(3d): b + 2c = 0 (Mod 3) .

Il suffit donc d'introduire le quotient et le reste de la division par 3 des données précédentes, en posant:
b = 3Kb + b1
c = 3Kc + c1
pour obtenir:

6Kb + 2b1 + 3Kc + c1 = 0 (Mod 3)
3Kb + b1 + 6Kc + 2c1 = 0 (Mod 3)

soit finalement deux conditions portant sur deux entiers du domaine [0 ; 2], et conduisant à 32 = 9 cas à examiner:
(2e) 2b1 + c1 = 0 (Mod 3) ,
(3e) b1 + 2c1 = 0 (Mod 3) .

Le tableau ci-dessous contient les valeurs des couples (u = 2b1 + c1 , v = b1 + 2c1):
C1 \ B1                     0                 1                 2

  0                        (0,0)            (2,1)            (4,2) 

  1                        (1,2)            (3,3)            (5,4)

  2                        (2,4)            (4,5)            (6,6)

L'énoncé n'admet finalement de solution que si (et seulement si) u = v , soit d'une manière équivalente:
b - c = 0 (Mod 3) .

Dernière modification par Wiwaxia (22-05-2018 10:11:38)

Hors ligne

Pied de page des forums