Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 05-03-2018 15:25:30

Hawk92
Membre
Inscription : 05-03-2018
Messages : 1

Equilibre de nash pur theorie des jeux

Bonjour a tous ,
En theorie des jeux nous avons des exercices sur les equilibres de Nash :
F (x,y)=3xy-2x+y et g (x;y)=xy-y^2 et x et y appartiennent a R.
Je calcule donc la fonction de meilleure réponse du joueur 1 en mettant x en facteur et en faisant 3 cas selon si y egal superieur ou inférieur a 2/3.
Et pour le deuxieme joueur je dérive par rapport a y et be trouve y=(1/2)x .
Le point fixe est donc y=2/3 et x =4/3.
Je voulais savoir s il fallait effecrivement deriver pour le joueur 2 en raison du carré ou non .
Merci d avance

Hors ligne

#2 07-03-2018 16:06:12

Fuchur
Membre
Inscription : 07-03-2018
Messages : 4

Re : Equilibre de nash pur theorie des jeux

Bonjour,

si j'ai bien compris ta question la fonction $F$ décrit le gain du premier joueur en fonction de son action $x$ et l'action $y$ de l'autre joueur; le joueur 1 cherche à maximiser $F$; il veut trouver son action $x$ optimal pour un action $y$ de l'autre joueur donné (la même chose pour la fonction $g$, avec les rôles des deux joueurs échangés) ??

Dans ce cas on peut effectivement calculer les dérivés $\frac{dF}{dx}$ et $\frac{dg}{dy}$ et chercher où elles s'annulent.
Une autre façon est de changer l'écriture de g :

$g(x,y) =xy-y^2 = -(y-x/2)^2+x^2/4$,

donc le maximum de g (pour x donné) est $x^2/4$, atteint pour $y=x/2$

Bonne journée

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?18 - 5
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums