Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 03-12-2017 19:40:56

carbon903
Membre
Inscription : 03-12-2017
Messages : 2

Trouver la suite de matrice M^n

Bonjour,

alors, j'ai une matrice 3X3 :
        0     ;   a    ;   1-a
M=   1-b  ;   0    ;   b
        c     ;  1-c   ;   0
et je cherche à en déduire l'écriture de la suite de matrice M^n

J'ai calculé M^2 qui me donne :
a(1-b)+c(1-a)  ;  (1-a)(1-c)       ;   ab
bc                   ;  a(1-b)+b(1-c)  ;  (1-a)(1-b)
(1-b)(1-c)        ;  ac                   ;  b(1-c)+c(1-a)

mais je ne vois toujours rien. Lorsque je calcule M^3, je vois le déterminent qui apparaît dans la diagonale...
Mais bon, je suis bloqué.
Quelqu'un pourrait m'aider, s'il vous plait

Merci :)

Hors ligne

#2 03-12-2017 22:15:21

Roro
Membre
Inscription : 07-10-2007
Messages : 572

Re : Trouver la suite de matrice M^n

Bonsoir,

A première vue, et sans trop réfléchir je te proposerai de diagonaliser ta matrice. Je ne sais pas si c'est simple ici mais si tu sais la diagonaliser, il sera en suite facile de calculer $A^n$.

Mais la matrice étant un peu particulière, il y a peu être une astuce... par exemple en Utilisant Cayley-Hamilton et en calculant les invariants (la trace est clairement nulle...)

Roro.

Dernière modification par Roro (03-12-2017 22:17:26)

Hors ligne

#3 04-12-2017 10:03:44

Yassine
Membre
Inscription : 09-04-2013
Messages : 987

Re : Trouver la suite de matrice M^n

Bonjour,
Je pense comme Roro.
Un peu d'aide pour que tu explores à l'aide de calcul formel sous Python.
Tu peux exécuter ce code en ligne à l'adresse live.sympy.org


x, a, b, c = symbols('x a b c')
M = Matrix([[0, a, 1-a], [1-b, 0, b], [c, 1-c, 0] ])
I = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1] ])
A = M - x*I

#polynome caracrétristique det(M-xI)
Poly = collect(A.det(),x)

# diagonalisation M=PDP^-1
P,D = M.diagonalize()

# Ensuite, pour afficher une variable, il suffit de taper son nom, exemples, une puissance de M
M**3
 


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#4 04-12-2017 11:03:41

carbon903
Membre
Inscription : 03-12-2017
Messages : 2

Re : Trouver la suite de matrice M^n

je pensais aussi passer par une diagonalisation mais ils souhaitent que je generalise puis que je trouve la matrice de passage permettant de diagonaliser M.
sinon avec le theoreme de cayley-hamilton je trouve que :
M^3=M(1-a)+aId
avec a=ca+bc+ab-c-b-a+1
d'où, M^(n+2)=(1-a)M^n+aIdM^(n-1)

Hors ligne

#5 04-12-2017 12:07:29

Yassine
Membre
Inscription : 09-04-2013
Messages : 987

Re : Trouver la suite de matrice M^n

Attention, tu utilises $a$ alors qu'il est déjà affecté. Tu devrais dire que $M^3=(1-\alpha)M +\alpha I$ avec
$\alpha=ca+bc+ab-c-b-a+1$ (qui vaut également $(1-a)(1-b)(1-c)$).


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?78 - 68
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums