Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

Répondre

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quelles sont les lettres manquantes? Etes-vous un humain ou un roxxx?

Retour

Résumé de la discussion (messages les plus récents en premier)

Alzo.ba
02-11-2017 09:04:27

C'est comme sa qu'il nous a donner sa

Soient X et Y deux variables de lois respectives a et 2a. 
1) Si X et Y sont indépendantes, montrer que p(X≥Y)≤exp[a(−3+√8)] 
2) Si X et Y ne sont pas indépendantes déterminer un réel A et une constante c>0 tels que p(X≥Y)≤Aexp (−ca)

Alzo.ba
02-11-2017 09:00:51

Non j'ai pas eu d'indication suis rester deux semaines avec l'exercice !!!!
Notre professeur a refuse de le corriger et je pense qu'il va nous le donner a l'examen

Fred
02-11-2017 08:30:53

J'ai essayé d'aller un peu plus loin mais je n'y suis pas arrivé. Tu n'as pas eu d'indications ?

Alzo.ba
02-11-2017 08:03:24

Bonjour cher membre
Je suis toujours bloqué sur cet exercice et j'ai examen de probabilité apres demain

Alzo.ba
01-11-2017 08:04:01

La ligne suivante j'obtien $
{EXP}{\mathrm{(}}\mathrm{{-}}{3}\mathit{\lambda}{\mathrm{)}}\sum{\frac{{\mathit{\lambda}}^{k}}{k\mathrm{!}}}\frac{{\mathrm{(}}{2}\mathit{\lambda}{\mathrm{)}}^{j}}{j\mathrm{!}}
$

Alzo.ba
01-11-2017 07:58:39

$
\mathrm{\sum}{P}
$
$
\left({{X}\mathrm{{=}}{k}}\right){P}\left({{Y}\mathrm{{=}}{j}}\right)\mathrm{{=}}\sum{{\mathrm{[}}\exp{\mathrm{(}}\mathrm{{-}}\mathit{\lambda}{\mathrm{).}}}{\frac{\mathit{\lambda}}{k\mathrm{!}}}^{k}{\mathrm{][}}\exp{\mathrm{(}}\mathrm{{-}}{2}\mathit{\lambda}{\mathrm{).}}\mbox{\footnotesize $\frac{{2}\mathit{\lambda}{\mathrm{)}}^{j}}{j\mathrm{!}}$}
$

Fred
01-11-2017 07:49:18

Oui, bien sûr, il faut utiliser la loi de Poisson. Et alors qu'obtiens-tu?

Alzo.ba
01-11-2017 07:06:34

$
\mathrm{\sum}{P}\left({{X}\mathrm{{=}}{k}}\right){P}\left({{Y}\mathrm{{=}}{j}}\right)\mathrm{{=}}\hspace{0.33em}{jutilise}\hspace{0.33em}{la}\hspace{0.33em}{loi}\hspace{0.33em}{de}\hspace{0.33em}{poisson}\hspace{0.33em}
$   ????????

Fred
01-11-2017 06:55:09

Essaie de détailler un peu plus les différentes étapes, sinon cela va être difficile pour nous de t'aider....

Alzo.ba
01-11-2017 06:31:55

Bonjour
J'ai utiliser la loi de poisson calculer les probabilité X=k et Y=j
Jarive a obtenir inferieur a exp(-3 fois lamda ) mais sa mank le reste

Fred
01-11-2017 05:53:35

A quoi arrives tu ?

Alzo.ba
31-10-2017 22:11:21

Bonsoir
Jarrive pas a mojoré la probabilité par l'expression demander

Fred
31-10-2017 19:21:51

Bonjour,

  Voici comment je m'y prendrais. Je dirais que l'événement "$X\geq Y$" est égal à la réunion disjointe des événements $A_{k,j}:"X=k\textrm{ et }Y=j"$ pour $k\geq j$, et je calculerais la probabilité de chaque $A_{k,j}$ en utilisant que $X$ et $Y$ sont deux variables aléatoires indépendantes.


F.

Alzo.ba
31-10-2017 18:37:36

C'est X tend vers $
{P}{\mathrm{(}}\mathit{\lambda}{\mathrm{)}}
$
Et Y tend vers P$
{\mathrm{(}}{2}\mathit{\lambda}{\mathrm{)}}
$
J'ai besoin d'aide
merci

Alzo.ba
31-10-2017 18:33:11

Salut cher membre de se forum
Exercice soit (omega ,Á , P) un espace probabilité.
On suppose X $
{P}{\mathrm{(}}\mathit{\lambda}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}{et}\hspace{0.33em}{Y}\hspace{0.33em}{P}{\mathrm{(}}{2}\mathit{\lambda}{\mathrm{)}}
$ si X et Y sont indépendantes
1-Montrer que $
{P}{\mathrm{(}}{X}\mathrm{\geq}{Y}{\mathrm{)}}\mathrm{\leq}\exp{\mathrm{[}}\mathrm{{-}}{\mathrm{(}}{3}\mathrm{{-}}\sqrt{8}{\mathrm{)}}\mathit{\lambda}{\mathrm{]}}
$

Pied de page des forums