Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

Répondre

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
soixante dix-sept plus quatre-vingt dix-neuf
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Retour

Résumé de la discussion (messages les plus récents en premier)

Fred
14-10-2017 06:39:49

Je pense que tu dois remplacer l'intersection par une réunion. Tu peux montrer que si x n'est pas dans l'ensemble de droite alors il n'est pas dans celui de gauche !

bib
13-10-2017 23:12:00

J'ai une autre question s'il vous plaît. Si  $\Omega$ est un ouvert dans $\mathbb{R}^n$, et $f,g \in \mathcal{D}(\Omega)$. Comment on montre rigoureusement que $Supp(f+g) \subset Supp(f) \cap Supp(g)$ et qu'on n'a pas d'égalité?

bib
13-10-2017 22:45:36

Merci infiniment pour votre aide.

Fred
13-10-2017 21:37:17

Utilise la relation de Chasles pour te ramener à une seule intégrale.

bib
13-10-2017 20:46:52

Non vous avez raison, j'ai fait un dessin et j'avais confondu les deux et je me suis emmêlé les pinceaux. Ok c'est réglé pour ce point.
Pour le cas $2 \leq x \leq 4$ on a $g(x)= \displaystyle\int_{-1}^1 \varphi(y) dy - \displaystyle\int_{-1}^{x-3} \varphi(z) dz$
je dis que ça ne peut pas être nul, mais comment le justifier rigoureusement? S'il vous plait.

Fred
13-10-2017 18:33:56

Parce que tu n'as pas pensé à dessiner d'abord $\varphi$, puis $f$, puis à interpréter $g$ en termes d'aires....

Si tu fais cela, la réponse au support de $g$ est assez claire.

F.

bib
13-10-2017 12:10:26

Bonjour,
On conclut alors que $Supp(g) =[-1,4]$.
Si c'est bon, j'ai une question s'il vous plaît. La première étape de la solution est de dire que $Supp(f) \subset [-1,1] \cup [2,4]$, donc moi je ne pense as directement à considérer les cas $1 \leq x \leq 2$ et $x \geq 4$. Comment expliquer le fait qu'on étudit ces deux cas?

Fred
12-10-2017 12:48:12

1. Je ne crois pas.
2. L'ensemble $U$ que tu décris est ouvert!!!!! Mais la fonction $g$ est nulle aussi en -1 et en 4.

bib
12-10-2017 12:27:14

Merci beaucoup.  J4ai deux questions s'il vous plaît:
1. est-ce que ce résultat à un nom?
2. on conclut que $Supp (g)= [-1,4]$. Pour l'ensemble où $g$ est nulle, c'est $U=]-\infty,-1[ \cup ]4,+\infty[$. L'ouvert d'annulation est le plus grand ouvert où $g$ est nulle. Mais ici $U$ n'est pas ouvert. Qui est l'ouvert d'annulation? S'il vous plaît.

Fred
12-10-2017 12:09:35

Si tu intègres sur [a,b] une fonction continue et strictement positive sur ]a,b[ alors l'intégrale est strictement positive.

Fred

bib
12-10-2017 10:17:50

Oui, alors en faisant le changement de variable $z=y-3$, on a $\displaystyle\int_2^4 \varphi(y-3) dy = \displaystyle\int_{-1}^1 \varphi(z) dz$, donc pour tout $x \geq 4$ on a $g(x)= \displaystyle\int_{-1}^1 \varphi(y) dy -  \displaystyle\int_{-1}^1 \varphi(z) dz=0$.

Ma question est: s'il vous plaît, quel argument utiliser pour montrer que $\displaystyle\int_{-1}^x \varphi(y) dy \neq 0$ pour tout $x \in ]-1,1]$?

Fred
12-10-2017 05:47:48

Je te conseille plutôt de commencer à prouver qu'elle Est mulle si x>4.

F

bib
11-10-2017 23:21:36

Je reprend les calculs.
1. Si $x < -1$ alors $g(x)=0$
2. Si $-1 < x < 1$ alors $g(x)= \displaystyle\int_{-1}^x \varphi(y) dy$
3. Si $1 < x < 2$ alors $g(x)= \displaystyle\int_{-1}^1 \varphi(y) dy$
4. Si $2 < x < 4$ alors $g(x)= \displaystyle\int_{-1}^1 \varphi(y) dy - \displaystyle\int_2^x \varphi(y-3) dy$
5. Si $x >4$ alors $g(x)= \displaystyle\int_{-1}^1 \varphi(y) dy - \displaystyle\int_2^4 \varphi(y-3) dy$
Ma question est comment prouver que $g$ ne s'annule pas sur $]-1,+\infty[$? S'il vous plaît.

Fred
11-10-2017 20:59:22

Pas d'accord, car tu n'as pas corrigé ce qui se passe dans les autres cas...

bib
11-10-2017 17:57:40

On a pour $1<x<2: g(x)= \displaystyle\int_{-1}^1 (\varphi(y)-\varphi(y-3)) dy + \displaystyle\int_1^x  (\varphi(y)-\varphi(y-3)) dy$ donc pour $1<x<2$ on a $g(x)=\displaystyle\int_{-1}^1 \varphi(y) dy$. Je pense que c'est ok maintenant. Et avec les autres cas de mon précédent post, on a $Supp(g)= \overline{]-1,+\infty[}= [-1,+\infty[$. C'est ok? S'il vous plaît.

Pied de page des forums