Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

Répondre

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Ecrire en lettres le nombre suivant : 7

Retour

Résumé de la discussion (messages les plus récents en premier)

leon1789
13-10-2017 15:03:30

Bonjour

Sur Wikipedia https://fr.wikipedia.org/wiki/Discrimin … A9t.C3.A9s
la définition donnée est sous l'hypothèse que la caractéristique de l'anneau intègre ne divise pas le degré de P (autrement dit, le degré de la dérivée de P ne chute pas).

Mais cela n'est pas la définition générale du discriminant, qui, elle, est valable dans un anneau commutatif quelconque.

Dattier
11-10-2017 23:56:38

Salut,

Il existe une généralisation simple du discriminant, [tex]P(x)=x^n+a_nx^{n-1}+...+a_1[/tex] tel que [tex]\forall x\leq 0, P(x)\neq 0[/tex]
Si [tex]\Delta = a_n^n-n^na_1<0[/tex] alors [tex]P[/tex] a au moins une racine non réel.

PS : il existe une généralisation plus compliqué cf wiki.

Cordialement.

Fred
03-10-2017 11:28:03

Merci, je vais regarder cela d'un peu plus près rapidement.

F.

leon1789
03-10-2017 08:22:42

Bonjour à tous,

petit message pour dire que la définition du discriminant d'un polynôme donnée ici
http://www.bibmath.net/dico/index.php?a … ltant.html
n'est pas totalement correcte.

Elle est correcte sous l'une de ces hypothèses :
1) quand la caractéristique du corps K ne divise pas le degré de P
2) ou lorsque le polynôme P est unitaire.

Faites le calcul avec P = aX² + bX + c en caractéristique 2 :
vous verrez que la formule donnée aboutit à b²/a et non b² (le 4ac valant 0 en caractéristique 2).

Cordialement

Pied de page des forums