Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

Répondre

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
vingt cinq plus treize
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Retour

Résumé de la discussion (messages les plus récents en premier)

Fred
23-02-2021 22:03:41

Exactement de la même façon, cela ne change pas....

Ya3nO
23-02-2021 18:40:22

Bonsoir Fred merci beaucoup pour ton aide à la question 2 j'espère pouvoir m'en sortir

du coup pour l'autre v indice -1 comment faire ? ce -& en indice me perturbe :(

Fred
23-02-2021 14:32:35

Pour la question 2. tu dois utiliser la caractérisation des sous-espaces vectoriels. Autrement dit, tu dois prouver (pour $V_1$) que :
* $0\in V_1$
* $V_1$ est stable par addition (si $u,v\in V_1$, alors $u+v\in V_1$).
* $V_1$ est stable par multiplication par un scalaire (si $v\in V_1$ et $\lambda\in K$, alors $\lambda v\in V_1$).

F.

Ya3nO
23-02-2021 13:01:16

bonjour, j'espère que vous allez bien !
j'ai la première question ensuite du flou.

en ce semestre on a aucun cours ni en distancié on se démerde du coup.

Fred
23-02-2021 07:41:34

Bonjour

  Et si tu nous disais d'abord ce que tu as fait sur ce long exercice ?

F

Ya3nO
23-02-2021 01:33:34

Pour le v-1 le -1 est en indice comme le n pour les suites

Ya3nO
23-02-2021 00:58:50

Etant donné un espace vectoriel V sur le corps K, on appelle involution de V tout endomorphisme a de V tel que a◦a(v)=v pour tout v∈V. Danstoutle devoir on note K un corps (avec K = R `a partir de la question 7), on note V un espace vectoriel sur K et on note a une involution de V .

1. Montrer que a est bijective.

2. On définit deux parties de V par les formules

V1 ={v∈V /a(v)=v}, V−1 ={v∈V /a(v)=−v}. Montrer que V1 et V−1 sont des sous-espaces vectoriels de V .

3. Montrer que V = V1 ⊕ V−1.

Désormais on appelle b une seconde involution de V . Selon ce qui vient d'être démontré, b est bijective et on a V = W1 ⊕ W−1 ou` l’on a posée

W1 ={v∈V /b(v)=v}, W−1 ={v∈V /b(v)=−v}.

On supposera que a et b anticommutent, c’est-à-dire que a ◦ b + b ◦ a = 0.

4. Montrer que V1 ∩ W1 = V1 ∩ W−1 = V−1 ∩ W1 = V−1 ∩ W−1 = {0}. 5. Montrer que b(V1) = V−1 et que b(V−1) = V1.

6. On appelle antiinvolution de V tout c ∈ End(V ) tel que c ◦ c(v) = −v pour tout v ∈ V ; montrer que a ◦ b et b ◦ a sont des antiinvolutions.

Désormais K = R. Pour tout nombre complexe z = x+ıy et tout v ∈ V, on définit le produit de v par z grâce à la formule

(P) (x + ıy) × v = x × v + y × (a ◦ b(v)).

On observera que si z = x on retrouve le produit x×v du vecteur v par x :

donc, la formule (P) étend à C × V la multiplication déjà connue sur R × V .

7. Montrer que pour tous z,z′ ∈C et v∈V on a. z×(z′×v)=(z×z′)×v puis énoncer sans les démontrer les formules qu’il faudrait encore vérifier pour pouvoir affirmer que V est un espace vectoriel complexe.

On admet que le produit (P) fait de V un espace vectoriel complexe.

8. On suppose que V est de dimension complexe finie n. Montrer que V1 et V−1 sont de dimension r ́eelle n, et que toute base réelle (b1 , . . . , bn ) de V1 est aussi une base complexe de V telle que (ıb1, . . . , ıbn) est une base réelle de V−1.

9. Si v ∈ V a les coordonnées (z1,...,zn) dans la base réelle (b1,...,bn) de V1 vue comme base complexe de V , trouver celles de a(v), b(v) et a ◦ b(v).

Pied de page des forums