Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

Répondre

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
treize plus quatre-vingt dix-sept
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Retour

Résumé de la discussion (messages les plus récents en premier)

freddy
23-11-2020 09:26:51

Salut,

il n'y a pas vraiment de formules toutes faites car tout dépend de ce que l'on sait. Mais il y a des formules de base qu'il faut connaitre et que tu as certainement apprises en cours. Faut les revoir, sans te crisper :-)

Tiens, un lien qui illustre parfaitement ton sujet. Tu devrais mieux comprendre mes calculs.

Au delà, je ne peux plus rien faire, il te faudrait un intervenant oral pour t'expliquer mieux les choses.

PS : j'ai trouvé une vidéo sur YouTube sur le cours en première/terminale sur les probabilités conditionnelles. Il y en a pour 25 minutes.
A toi de voir !

dev
22-11-2020 19:56:13

Je vais tout faire pour rattraper mon retard, mais enfaite si l'on arrive à trouver P(A1), P(A1barre), P(A2) et P(A2 barre) et qu'on connais les formules on peut tout faire.
Avez vous une technique pour arriver à trouver P() car il m'arrive de bloquer comme vous avez pu le constater

freddy
22-11-2020 19:48:55
freddy a écrit :

Re,

je te mets sur la piste de la réponse à la question 3-a.

On te demande $P(A_2) = P((A2\cap A_1) \cup (A_2 \cap \bar{A_1})) = P(A2\cap A_1) + P(A_2 \cap \bar{A_1}) = ?$

Tu dois faire un calcul intermédiaire et dire combien vaut $P(A_2/\bar{A_1})$. Sachant que  $P(A_2 \cap \bar{A_1}) =P(A_2/\bar{A_1})\times P(\bar{A_1})$, tu pourras y répondre.

Je finis le calcul théorique.
$P(A_2 \cap \bar{A_1}) =P(A_2/\bar{A_1})\times P(\bar{A_1}) = [1-P(\bar{A_2}/ \bar{A_1})]\times P(\bar{A_1})$

Cela étant, si tu ne maîtrises pas un minimum de règles basiques, refaire le retard va être compliqué car cet exo est tout, sauf facile.

dev
22-11-2020 18:16:40

Ce n'est pas le fait que je ne lis pas vos message bien au contraire, c'est juste que je ne comprend, j'ai beaucoup de mal avec ce chapitre mais je veux réussir à le comprendre en m'exerçant

freddy
22-11-2020 18:02:37
dev a écrit :

P(A2/A1)= P(A1) x PA1(A2) = 0,95

Non !
P(A2/A1)=0,95 = P(A2 inter A1)/ P(A1) ! Comme P(A1)=0,28, on en déduit P(A2 inter A1) ! Connais tu bien ton cours et les règles sur les probabilités ? Si tu relis bien mes réponses, j'ai déjà donné ce résultat. Si tu ne fais pas l'effort de lire ce que j'écris, je vais abandonner.

Refais ton arbre et complète-le.

dev
22-11-2020 17:57:42

P(A2/A1)= P(A1) x PA1(A2) = 0,95

freddy
22-11-2020 17:38:54
dev a écrit :

P(A2 barre) = 0,432 et P(A2) = 0,56 ..?

Non ! Relis ton sujet et mes réponses !

freddy
22-11-2020 17:29:24
dev a écrit :

En classe on dit PA2(A1) fin ont dit sachant pas si c'est pour cela, je n'ai pas l'habitude

On dit "si" ou "sachant que". Ensuite, le plus important est que chacun connaisse la notation standard qui est P(A/B).

dev
22-11-2020 17:29:02

P(A2 barre) = 0,432 et P(A2) = 0,56 ..?

dev
22-11-2020 17:08:55

En classe on dit PA2(A1) fin ont dit sachant pas si c'est pour cela, je n'ai pas l'habitude

freddy
22-11-2020 17:07:24
dev a écrit :

Je crois que j'ai trouver:
P(A2) 0,266 divisée par 0,432 = 0,61
1-0,61=0,39
P(A2 barre) = 0,39 divisé par 0,72 = 0,5
Est-ce correct ?

Non, je t'ai donné une piste mais tu ne lis pas mes réponses ...

freddy
22-11-2020 17:00:30

Ben P(A2 si A1) est la proba conditionnelle de voter au second tour pour A sachant qu'on a voté pour lui au premier tour.

C'est le thème de ton exo, non ?

dev
22-11-2020 16:59:46

Je crois que j'ai trouver:
P(A2) 0,266 divisée par 0,432 = 0,61
1-0,61=0,39
P(A2 barre) = 0,39 divisé par 0,72 = 0,5
Est-ce correct ?

dev
22-11-2020 16:53:53

oula je suis un peu perdu..

freddy
22-11-2020 16:50:16
dev a écrit :

Je n'avais pas vue votre message!
P(A2 divisé par A1)=0,95 et P(A2 barre)=0,05
Donc P(A2) = 0,26 et P(A2 barre)=0,74?

Attention : P(A2 si A1)=0,95 et P(A2 barre si A1)=0,05

Donc P(A2) = 0,26 et P(A2 barre)=0,74 ? Non !

Pied de page des forums