Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

Répondre

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
vingt et un plus quatre-vingt dix
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Retour

Résumé de la discussion (messages les plus récents en premier)

elmaths
05-12-2019 17:43:57

Merci a tous pour vos réponses

freddy
05-12-2019 17:28:01

Salut,

les sujets sont sympas, mais réservés aux petits génies en herbe semble t-il :-)

Sinon, il y a un truc amusant, qui repose sur la manière de présenter le sujet.

Ecrire : résoudre pour $x$ et $y$ réels : $x^2+y^2=4(y−xy−1)$ est angoissant car on pense tout de suite à une fonction à deux variables, qui est toujours un peu compliquée à manipuler.

Tandis que écrire : résoudre pour $x$ réel et $\alpha$ paramètre réel quelconque $x^2+\alpha^2=4(\alpha-\alpha x-1)$ pose moins de problème en première lecture au cerveau qui élabore rapidement une stratégie de résolution.

Et très vite, on comprend qu'il faudra discuter selon le paramètre réel. Il faudra attendre la fin de la terminale et le supérieur pour ne plus se laisser embarrasser par ces problèmes de présentation.

Pour le niveau, je vois bien ça en fin de lycée des années 75/80, je ne pense pas que nos anciens qui ont fait Math Elem auraient pu le faire en fin de classe de troisième, sauf peut être quelques très rares gars.

yoshi
05-12-2019 12:58:11

Re,

Bin oui, il suffit de consulter le classement PISA, pour être édifié...

@+

Black Jack
05-12-2019 12:20:01

Re,

Non, discriminant = ex 1S et ES, qui n'existent plus, et reconstituées de facto par les élèves (ou leurs parents) par un choix précis parmi les options disponibles qui ont remplacé lesdites classes...

Ben voila, je ne sais pas où on va ... mais on y va vite.

Tous n'en sont heureusement pas encore là, Maroc, Belgique ...


:)

yoshi
04-12-2019 19:22:49

Re,

Si ce n'est pas accessible en Collège en France ... l'exercice devrait l'être au début (ou presque) lycée.

Non, discriminant = ex 1S et ES, qui n'existent plus, et reconstituées de facto par les élèves (ou leurs parents) par un choix précis parmi les options disponibles qui ont remplacé lesdites classes...

@+

Black Jack
04-12-2019 19:12:46

Bonsoir,

Pour l'exercice demandé, mon message précédent indique, je pense, une voie possible de résolution. (en Belgique, accessible à l'équivalent du début de 2de en France ... voire en fin de 3ème comme exercice facultatif d'initiation).

J'ignore le contenu des programmes en France.

On remettant tout dans le membre de gauche : x² + 4x.y + (y² -4y + 4) = 0
Equation du second degré en x.

Delta = 4*[4y² - (y² -4y + 4)] = 4*(3y² + 4y - 4)

Solutions si Delta >= 0 donc si : (3y² + 4y - 4) >= 0

(y+2)(3y-2) >= 0 et donc y dans ]-oo ; -2] U [2/3 ; +oo[

Et pour n'importe quelle valeur de y dans ]-oo ; -2] U [2/3 ; +oo[, on trouve le(s) x correspondant(s) par : x = -2y +/- V(3y² + 4y - 4)

Donc les couples (x,y) solutions sont : (-2y +/- V(3y² + 4y - 4) , y) pour tout y compris dans ]-oo ; -2] U [2/3 ; +oo[

Il a une infinité de couples solutions.

Si ce n'est pas accessible en Collège en France ... l'exercice devrait l'être au début (ou presque) lycée.

yoshi
04-12-2019 15:15:07

Re,

Je maintiens ce que j'ai j'ai dit, avec un codicille : en France, ce n'est pas un exercice d'un niveau Collège... ni même 2nde...
D'ailleurs, je ne vois nulle par la mention "niveau Collège" (je n'ai aucune notion d'arabe, peut-être est-ce écrit dans cette langue ?)
Si c'est d'un niveau Collège marocain, alors vous nous êtes passé devant et de loin...

Sinon, les exercices sont intéressants...
Exercice 1
Je vois. Resterait à formelliser.

Exercice 2
1. Somme des termes d'une suite géométrique de raison 3 et de premier terme 1. 1ere S
2. A priori sans réfléchir, je ne vois pas...
3) Sans y avoir réfléchi, j'ai une méthode, mais certainement pas la bonne : elle présuppose que je sois capable de construire, exactement, deux rééls a et b...

Aucun élève de Collège n'est capable de faire cet exercice. 2nde sans aide, j'ai de gros doutes...

Exercice 3
Il m'en rappelle un autre, un peu moins "évident", si tu veux t'amuser...
On donne un angle aigu $\widehat{xOy}$ et un point M à l'intérieur du secteur angulaire compris entre les deux demi-droites $[Ox$ et $[Oy$, mais n'appartenant pas à la bissectrice de l'angle.
En utilisant règle non graduée et compas, construite les points A et B de $[O$ et $[Oy$ tels que M soit le milieu de $[AB]$
Le tien et le mien sont faisables en Collège en 4e...

Désolé, je ne peux prendre pas le temps de réfléchir plus d'une minute à la fois, encore pour 10 jours... Après, oui.

Mais un de mes petits camarades te répondra sûrement.

@+

elmaths
04-12-2019 14:23:51

L'exercice se trouve à l'Olympiade de mathématiques 2019-2020
Voila la copie origine https://drive.google.com/open?id=1CPCRcrEBPJGnyMyjfvYq4taxOqj1c3KU

freddy
04-12-2019 10:49:31

Salut,

mais non, c'est le tout début d'une leçon introductive au Collège de France, notre ami aura oublié de tout nous dire :-)

yoshi
04-12-2019 10:10:16

Re,

Niveau : collège

Soit notre ami a abusé du chocolat qui, selon Phantastica, à doses non négligeables agit comme hallucinogène, soit le prof a tâté du Peyotl, "la plante qui fait les yeux émerveillés" (ou alors, il vous fait une farce !)...

Dans tous les cas, niveau Collège, sûrement  pas !
Il faut savoir que dans les nouveaux programmes, les simples systèmes de deux équations à deux inconnues du premier degré ne figurent plus...
Il faut savoir encore que résoudre des équations au Brevet des Collèges des nouveaux programmes , c'est du genre  :
La solution de l'équation 2x+ 3 = 9  est elle  Réponse A :  x = 0   Réponse B : x=-1   Réponse C : x=3.
Cocher la bonne réponse...

Non le niveau ne baisse pas !

@+

Black Jack
04-12-2019 09:38:56

Salut,

x² + 4x.y + (y² -4y + 4) = 0

Equation du second degré en x ...

Delta = ...

Solutions si Delta >= 0

...

Si c'est dans R, alors, il y a une infinité de solutions.

Zebulor
04-12-2019 09:26:10

Bonjour,
Il se pourrait que ton prof se soit trompé de bâtiment.

elmaths
03-12-2019 23:00:38

Bonsoir aider moi svp
Trouver tous les réels [tex]x[/tex] et [tex]y[/tex] tel que : [tex]x^2+y^2=4(y-xy-1)[/tex]
Niveau : collège

Pied de page des forums