Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

Répondre

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
cinquante deux plus quatre-vingt trois
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Retour

Résumé de la discussion (messages les plus récents en premier)

Black Jack
11-01-2019 10:31:43

Bonjour,

Tu te compliques la vie.

Aire du triangle OMI = (1/2)*OI*MP = (1/2) * 1 * sin(x) = sin(x)/2

Or (voir sur le dessin) : Aire du triangle OMI < Aire du secteur circulaire OMI

sin(x)/2 < x/2 (x positif)

sin(x)/x < 1  (1)

Aire du triangle OIR = (1/2) * OI * RI = (1/2) * 1 * tan(x) = sin(x)/(2.cos(x))

Or (voir sur le dessin) : Aire du triangle OIR > Aire du secteur circulaire OMI

sin(x)/(2.cos(x)) > x/2

sin(x)/cos(x) > x

sin(x)/x > cos(x) (cos(x) > 0 ici)

cos(x) < sin(x)/x  (2)

(1) et (2) --> cos(x) < sin(x)/x < 1

Essaie de continuer ...

Ludilly
10-01-2019 19:35:09

Bonsoir,

je suis une élève en terminale S actuellement et je n'arrive pas a comprendre mon dm de maths :/
Pouvez vous m'aider svp ?

Voici l'énoncé :

L'objectif de cet exercice est de démontrer que (sin)'= cos et (cos)'=-sin
On considère le plan muni d'un repère (O;I;J)
Dans cet exercice on considère un réel x de l'intervalle ]0, Pi/2[

1) On considère le cercle trigonométrique C et le point M associé a x.
Faire un dessin en présentant également les points P(cos (x);0), Q(0; sin(x)) et R le point d'intersection de (OM) et de la tangente au cercle C au point I.

2) On admet que l'aire d'un secteur circulaire d'arc mesurant x radians est x/2
a) Exprimer en fonction de x les aires des triangles OMI et OIR
b) Montrer que cos(x) _< sin x)/x _< 1
c) En déduire lim sin (x)/x quand x tends vers 0
d) En déduire lim tan(x)/x quand x tends vers 0


3) a) montrer que cos(x)-1/x= sin(x)/x * -sin(x)/cos(x)+1
     b) En déduire Lim cos(x)-1/ x quand x tends vers 0

4) soient a un réel et h un réel non nul
a) Calculer Lim sin(a+h) -sin (a) / h   quand h tends vers 0
b) Calculer lim cos (a+h)-cos(a) / h quand h tends vers 0


Mes calculs sont:
1) j ai réussis a faire le dessin :)
2)a) Pour OMI j 'ai trouvé (cos(x)*sin(x)/2 )+ ( 1-cos(x) * sin(x) /2
       Pour OIR j 'ai trouvé [cos(x) +(cos(x) -1)]*[sin(x)+(sin(x)-1) /2

  b) par contre après je comprends pas :/
   pour l inéquation c 'est par rapport aux airs je sais mais je vois comment aboutir à ça.


Merci beaucoup pour toute contribution apportée.
Cordialement

Pied de page des forums