Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

Répondre

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quaranteneuf plus soixante quatorze
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Retour

Résumé de la discussion (messages les plus récents en premier)

D_john
13-11-2018 07:38:50

Salut,

Attention, 2x + 3 = polynôme de d°1 ! Les polynômes ont servi de lien avec tes connaissances pour résoudre 1/ mais ils n'interviennent pas dans cet exercice.
La bonne réponse (en relation avec la question 1/) est simplement    Noyau de D = J
I, J et V contiennent évidemment le même neutre.

eddy71
12-11-2018 23:15:28

bonsoir John , voila ce que j ai fais pour la question 2/ dans les grandes lignes :
Noyau de D(f) = { f appartenant V tq D(f) = 0 }
D(f) = 0 ssi f est constant
Noyau de D(f) est tt les polynomes de deg 1  qui s'ecrit sous la forme de  [tex]\Lambda[/tex] ou  [tex]\Lambda[/tex]  appartient a R

D_john
11-11-2018 09:07:24

u'r welcome

PS : J'espère que tu n'as pas oublié le neutre de I...

eddy71
11-11-2018 05:05:25
D_john a écrit :

Salut,

Bien ! Alors tu as dû résoudre 1/

Le retour aux définitions pour résoudre 2/ te conduit à trouver l’élément neutre de V.
Comme c’est le point le plus difficile (mdr !) je te le donne.
C’est O : R → R qui à x fait correspondre O(x) = 0.
Maintenant, ker(D) est évident non ?

A+


oh god je ne vois pas comment ne pas y avoir pensé , merci beaucoup John pour le hint

D_john
09-11-2018 08:33:22

Salut,

Bien ! Alors tu as dû résoudre 1/

Le retour aux définitions pour résoudre 2/ te conduit à trouver l’élément neutre de V.
Comme c’est le point le plus difficile (mdr !) je te le donne.
C’est O : R → R qui à x fait correspondre O(x) = 0.
Maintenant, ker(D) est évident non ?

A+

eddy71
08-11-2018 23:59:45
D_john a écrit :

A ce propos, J ne serait-il pas aussi un ensemble de polynômes ?


oui merci (y)

D_john
08-11-2018 09:47:48

Salut,

Quand on est perdu, il faut revenir aux définitions... et les réécrire avec les données de l'exo.
A ce propos, J ne serait-il pas aussi un ensemble de polynômes ?
A+

eddy71
08-11-2018 04:57:18

Bonjour tout le monde ,

je rencontre qlq difficultés a faire un exercice d'un devoir , j'ai deja eu a determiner des bases et dimensions mais de fonctions poylnomes , je ne vois pas du tout comment m y prendre pour ces deux questions , toute aide est la bienvenue merci d'avance .



Soit I ; l'espace vectoriel des fonctions dérivables de R dans R
Soit J ; l'ensemble des fonctions constantes de R dans R
On a que J est sev de I ; ( la preuve a été déja faite )

1/Determiner une base et la dimension de J

2/Soit D la fonction de I dans V ou a f on associe f' ( ou  V est l'espace de toute les fonctions de R dans R )
  D(f) = f'

Noyau de D

Pied de page des forums