$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Paradoxe de Zenon d'Elée

  Cinq cent ans avant Jésus-Christ, Zenon d'Elée a énoncé divers paradoxes qui tendent à prouver que le mouvement est impossible. Donnons ici une version de l'un de ses paradoxes : Achille ne rattrape jamais la tortue après laquelle il court. Pour fixer les idées, supposons qu'Achille et la tortue courrent le long d'une ligne droite, Achille avançant à 10m.s-1, la tortue à 1m.s-1 (ce qui fait beaucoup pour une tortue!). On supposera encore que la tortue à initialement 100m d'avance.

  Pour qu'Achille rattrape la tortue, il faut d'abord qu'il atteigne le point de départ de celle-ci. Il lui faut 10s, et la tortue a progressé de 10m. Pour rattraper la tortue, il doit encore parcourir 10m. Mais la tortue a encore avancé de 1m. Achille doit parcourir ce mètre, mais la tortue avance toujours! Et Achille ne pourra jamais rattraper la tortue puisqu'il doit toujours parvenir d'abord au point que la tortue vient de quitter, et celle-ci aura pris un peu d'avance.

  Pour éclaircir ce paradoxe, calculons le temps nécessaire à Achille pour rejoindre la tortue. Il lui faut 10s pour parcourir les 100m qui le sépare initialement de la tortue, puis 1s pour parcourir les 10m d'avance qu'elle avait encore, puis 1/10 s; mais la tortue a toujours 1/10m d'avance, et ainsi de suite... Par conséquent, le nombre de secondes qui s'écoulent avant qu'Achille ne rattrape la tortue est :
On obtient une somme comportant une infinité de termes. Ce que Zenon d'Elée n'avait pas prévu, c'est que cette somme infinie possède une valeur finie. Les règles sur les séries géométriques montrent en effet sans peine que la somme précédente fait 11s et 1/9.

La manipulation des sommes infinies (on parle de séries) a très longtemps posé des problèmes conceptuels et philosophiques aux mathématiciens. Le cours de Cauchy à l'Ecole Polytechnique en 1820, pourtant un modèle pour l'époque, comporte encore des erreurs à ce sujet. Il faudra attendre la fin du XIXè s., et les travaux de Karl Weierstrass, le législateur de l'analyse, pour que les règles soient clairement établies.