$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Théorème des valeurs intermédiaires - Dichotomie


  Le théorème des valeurs intermédiaires est le résultat suivant :

Théorème : Soit $f : [a,b]\to\mathbb R$ une fonction continue, vérifiant $f(a)\leq 0$ et $f(b)\geq 0$. Alors il existe $c\in[a,b]$ vérifiant $f(c)=0$.

Corollaire : L'image d'un intervalle par une fonction continue est un intervalle.
  Remarquons que le théorème des valeurs intermédiaires donne l'existence d'une solution à l'équation $f(x)=0$, mais rien concernant l'unicité (penser par exemple à $\cos(x)=0$ sur l'intervalle $[0,5\pi]$. C'est aussi un théorème spécifique pour les fonctions à valeurs réelles. Il ne fonctionne pas par exemple avec la fonction $f(\theta)=e^{i\theta}$ entre $0$ et $\pi$.

La première démonstration complète du théorème des valeurs intermédiaires, ne reposant pas sur l'intuition géométrique, est due à Bernard Bolzano en 1817.
Consulter aussi...