$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Séries alternées et leur critère de convergence

Une série de terme général $u_n\in\mathbb R$ est alternée si, pour chaque entier naturel $n,$ $u_{n+1}$ est de signe opposé à $u_n$. On a un critère très pratique de convergence pour ce type de séries :

Critère des séries alternées : Soit $(a_n)$ une suite de réels positifs, décroissante, et tendant vers $0$. Alors la série $\sum_n (-1)^n a_n$ converge. De plus, si on note $S$ sa somme, $S_n=\sum_{k=0}^n (-1)^k a_k$ la somme partielle d'ordre $n$ et $R_n=\sum_{k=n+1}^{+\infty} (-1)^k a_k$ le reste d'ordre $n$, alors pour tout entier naturel $n$, on a $$S_{2n+1}\leq S\leq S_{2n},\quad |R_n|\leq a_{n+1}$$ et $R_n$ est du signe de $(-1)^{n+1}$.

Exemple : La série $\sum \frac{(-1)^n}{n^\alpha}$ est convergente si et seulement si $\alpha>0.$

C'est dans les travaux de Leibniz que l'on voit apparaître pour la première fois un tel résultat.
Consulter aussi...
Recherche alphabétique
Recherche thématique