$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Conjecture de Poincaré

  Prenez une pomme, et imaginez un ruban autour de cette pomme. En faisant glisser le ruban tout doucement, il est possible de le comprimer en un point de la pomme, sans couper le ruban ni le faire quitter la surface de la pomme. Prenez maintenant un anneau, et imaginez un ruban enfilé autour de l'anneau. Cette fois, il est impossible, sans couper le ruban ou l'anneau, de réduire juste par glissement et compression le ruban en un point. En langage mathématique, on dit que la pomme est une surface simplement connexe, alors que l'anneau ne l'est pas.

  Poincaré savait il y a un peu moins d'un siècle que cette propriété caractérisait topologiquement la sphère parmi les surfaces de l'espace. Autrement dit, si une surface (fermée) de l'espace est simplement connexe, elle peut être déformée continûement en la sphère (une déformation continue peut être assimilée à ce que l'on est capable de réaliser avec de la pâte à modeler, sans couper une boule de pâte en deux). Poincaré posa alors en 1904 la question suivante : est-ce que cette propriété caractérise encore la sphère 3-dimensionnelle dans l'espace à 4 dimensions, ou plus généralement la sphère n-dimensionnelle dans l'espace à (n+1) dimensions. En langage plus mathématique :
Est-ce qu'une variété compacte de l'espace à n+1 dimensions dont chaque courbe peut-être réduite continuement en un point est homéomorphe à la sphère n-dimensionnelle?
  Bien sûr, il faut être un petit peu mathématicien pour comprendre ce que peut être la sphère dans l'espace à 4, 5 ou plus, dimensions. Et bizarrement, ce problème a été plus simple à résoudre pour les valeurs de n supérieure à 4. Il fut en effet résolu par Zeeman, Stallings et Smale pour n>4 vers 1961-1962, puis par Freedman en 1982 pour n=4. Ce fut plus simple à résoudre certes que le cas n=3, mais cela valut tout de même à Freedman la médaille Fields!

  La conjecture initiale de Poincaré (le cas n=3) restait donc irrésolu, et le Clay Mathematics Institute la choisit en l'an 2000 parmi les 7 problèmes du millénaire dont la résolution est primée 1 million de dollars. Le mathématicien russe Grigori Perelman, du prestigieux Steklov Institute of Mathematics de Saint-Petersbourg, a donné une preuve de la conjecture en 2003. Cette preuve a été validée par tous les experts. Cependant, Perelman a décliné le prix, ainsi que la médaille Fields qu'il a obtenu en 2006.
Consulter aussi...