$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Méthode et droite de Mayer

La méthode d'ajustement de Mayer est une méthode pour effectuer une régression affine d'une série statique à deux variables, c'est-à-dire pour trouver une droite qui passe au plus près d'un nuage de points. Elle consiste à partager un nuage de points rangés dans l'ordre croissant de leurs abscisses en deux sous-groupes de même effectif. Chacun des deux sous-groupes est alors remplacé par le point dont les coordonnées sont respectivement :

  • en abscisse, la moyenne arithmétique des abscisses des points du sous-groupe.
  • en ordonnée, la moyenne arithmétique des ordonnées des points du sous-groupe.

Si $G_1$ est le point issu du premier sous-groupe et $G_2$ le point issu du deuxième sous-groupe, la droite de Mayer est la droite passant par $(G_1G_2)$.

Exemple :

Une entreprise souhaite faire des prévisions sur son chiffre d'affaires. Les chiffres d'affaires réalisés depuis la création de l'entreprise sont donnés par le tableau suivant :

Année $x_i$ 1 2 3 4 5 6 7 8
Chiffre d'affaires $y_i$ en millions d'euros 16 19 22 23 24 26 27 30

Le premier groupe de points est (1,16), (2,19), (3,22) et (4,23). Le point $G_1$ a donc pour coordonnées $(2.5,20)$. Le second groupe de points est $(5,24)$, $(6,26)$, $(7,27)$ et $(8,30)$. Le points $G_2$ a donc pour coordonnées $(6.5,26.75)$. On a représenté sur la figure suivante la droite de Mayer :

Cette droite permet d'avoir une estimation du chiffre d'affaires prévisible de la dixième année, qu'on lit en regardant l'ordonnée du point de la droite d'abscisse 10 : le chiffre d'affaire devrait être proche de 32,6 millions d'euros.

Johann Tobias Mayer (1723-1762) était un astronome allemand. Il utilisa cette méthode d'ajustement pour étudier la position d'un point sur la Lune et publia des tables de la Lune permettant aux navigateurs de faire le point à un demi-degré près
Consulter aussi...