$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Méthode du pivot de Gauss

La méthode du pivot de Gauss est une méthode pour transformer un système en un autre système équivalent (ayant les mêmes solutions) qui est triangulaire et est donc facile à résoudre. Les opérations autorisées pour transformer ce système sont :

  • échange de deux lignes.
  • multiplication d'une ligne par un nombre non nul.
  • addition d'un multiple d'une ligne à une autre ligne.

Prenons l'exemple suivant :

On conserve la ligne L1, qui sert de pivot pour éliminer l'inconnue $x$ des autres lignes; pour cela, on retire L1 à L2, et 3 fois L1 à L3. On obtient :

On conserve alors la ligne L2 qui sert de pivot pour éliminer $y$ de la troisième ligne; pour cela, on remplace la ligne L3 par L3+L2. On trouve :

Ce dernier système, triangulaire, est facile à résoudre : la dernière ligne donne $z$, en reportant, la deuxième ligne donne $y$, etc...

Consulter aussi...