$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

L'escargot de Pythagore

  L'escargot de Pythagore est une figure qui permet de construire géométriquement les racines carrées des entiers consécutifs. On part d'un triangle rectangle dont les côtés de l'angle droit sont de longueur 1 (le petit triangle en bleu sur la figure ci-dessous). Par application du théorème de Pythagore, son hypoténuse a pour longueur racine(2).

  Puis, à partir de l'hypoténuse de ce triangle, on construit un nouveau triangle rectangle : l'hypoténuse du premier triangle forme un des côtés de l'angle droit du nouveau triangle, l'autre côté de l'angle droit est à nouveau de longueur 1. L'hypoténuse de ce second triangle rectangle a pour longueur L tel que L2=2+1=3. On a donc L=racine(3).

  On peut alors réitérer la construction, en construisant à chaque fois un nouveau triangle rectangle dont un des côtés de l'angle droit est l'hypoténuse du triangle rectangle précédent, l'autre côté de l'angle droit ayant pour longueur 1. Les longueurs des hypoténuses des triangles rectangles ainsi obtenus sont les racines carrées des entiers consécutifs.
Consulter aussi...