$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Méthode par balayage

  Le balayage est une méthode pour trouver une valeur approchée de la solution d'une équation f(x)=0 qui est particulièrement facile à implémenter sur un tableur ou sur une calculatrice. Elle consiste en la démarche suivante. On veut obtenir un encadrement à 10-p près de la solution d'une équation f(x)=0, avec f continue, dont on sait qu'elle est comprise entre les deux entiers a et b. On effectue les opérations suivantes :
  • on commence par balayer l'intervalle [a,b] avec un pas de 1. C'est-à-dire qu'on calcule f(a), f(a+1), f(a+2),... On s'arrête dès qu'on a trouvé deux entiers consécutifs n et n+1 pour lesquels f(n) et f(n+1) sont de signes opposés. On sait alors que f(x)=0 admet une solution dans l'intervalle [n,n+1].
  • on balaie ensuite l'intervalle [n,n+1] avec un pas de 0,1. On calcule donc f(n), f(n+0,1),f(n+0,2),... et on s'arrête dès qu'on a trouvé p de sorte que f(n+0,p) et f(n+0,p+0,1) sont de signes opposés.
  • on continue en balayant l'intervalle [n+0,p;n+0,p+0,1] avec un pas de 0,01
  • et ainsi de suite...
Exemple : On souhaite trouver un encadrement à 0,001 près de la racine de l'équation x3-6x2+6=0 comprise dans l'intervalle [0,4]. On note a cette racine. On obtient successivement les 4 tables suivantes :

Un encadrement à 0,001 près de a est donc 1,107<a<1,108.
Consulter aussi...