$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Lie Sophus Marius, (17 décembre 1842 [Nordfjordeid] - 18 février 1899 [Oslo])

Mathématicien norvégien, Lie fit ses études à l'université de Christiana (ancien nom de la ville d'Oslo). Il donna des leçons particulières pour gagner sa vie, et passa avec Klein l'hiver 69-70 à Berlin, l'été 70 à Paris. En 1872, une chaire mathématiques fut créé pour lui à Christiana, et en 1886, il succéda à Klein à Leipzig. Outre des travaux en géométrie projective de l'espace, on retient surtout de Lie l'étude de structures algébriques nouvelles qu'il applique à la géométrie, jusqu' à la création de toutes pièces de la théorie des groupes et algèbres qui portent son nom. Dans la notion de groupe et d'algèbre de Lie, interviennent des propriétés de continuité (groupe topologique), annonce la nouvelle branche importante des mathématiques que sera la topologie. Les travaux de Lie, dans ce domaine, seront principalement poursuivis par Elie Cartan.

Les entrées du Dicomaths correspondant à Lie

Les mathématiciens contemporains de Lie (né en 1842)