$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Leopold Kronecker (7 décembre 1823 [Liegnitz, Prusse] - 29 décembre 1891 [Berlin, Allemagne])

Leopold Kronecker est né à Liegnitz -actuellement Legnica, en Pologne, dans une famille aisée. Il a la chance d'avoir parmi ses enseignants au lycée Kümmer, qui détecte ses dons scientifiques et le pousse à étudier les mathématiques. C'est ce que fait Kronecker à l'université de Berlin, de 1841 à 1845, suivant aussi des cours d'astronomie et de philosophie. Il soutient son doctorat en 1845 sous la direction de Dirichlet. Sa thèse est prometteuse, mais Kronecker retourne dans sa ville natale afin de faire prospérer les affaires familiales. Il en profite aussi pour se marier, et s'il n'abandonne pas complètement les mathématiques, elles ne sont plus pour lui qu'un loisir.

En 1855, sa fortune est suffisante pour le mettre à l'abri du besoin jusqu'à la fin de ses jours. Il retourne alors à Berlin pour reprendre ses recherches. Il y retrouve Kümmer, et y rencontre Weierstrass. Si Kronecker n'enseigne pas, ses recherches progressent très rapidement. Le travail de Kronecker en théorie algébrique des nombres est majeur. Il est le premier à comprendre toute la profondeur du travail de Galois. Il est aussi l'un des mathématiciens qui achevèrent la construction de l'algèbre linéaire et multilinéaire initiée par Cayley et Grassmann. Il introduit aussi ce qu'il appelle un système modulaire, notion similaire au concept d'idéal introduit à la même époque par Dedekind.

En 1861, Kronecker est élu membre de l'Académie des Sciences de Berlin, et à partir de 1863, il enseigne dans l'Université de cette ville. A compter de 1870, Kronecker défend une vision constructiviste des mathématiques qui l'éloigne de ses contemporains. Il affirme la prééminence des nombres entiers, au point de revendiquer la citation suivante :

Dieu a créé les nombres entiers, tout le reste est fabriqué par l'homme.

Ainsi, Kronecker ne croit pas en l'existence des nombres transcendants, il rejette violemment la théorie des ordinaux transfinis de Cantor, et refuse la construction des réels proposée par Weierstrass. Cela le conduit à une vive opposition avec Cantor, Dedekind et même Weierstrass qui fut pourtant un de ses amis. Kronecker est très influent à Berlin, et il essaie de retarder la publication des travaux de ses opposants. Certains lui attribue même une part de responsabilité dans la dépression de Cantor. En un sens, Kronecker est un précurseur de Poincaré et de Brouwer.

Kronecker décède en 1891 à Berlin. Un an auparavant, il s'était converti au protestantisme.

Les entrées du Dicomaths correspondant à Kronecker

Les mathématiciens contemporains de Kronecker (né en 1823)