$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Carl Friedrich Gauss (30 avril 1777 [Brunswick] - 23 février 1855 [Göttingen])

Carl Friedrich Gauss, né le 30 avril 1777 à Brunswick, est considéré par ses pairs comme le prince des mathématiciens. Il est à la fois le dernier des classiques, et le premier des modernes, c'est-à-dire qu'il a résolu les problèmes les plus classiques avec les méthodes les plus modernes. Par exemple, il démontra comment partager une tarte en 17 parts égales à l'aide des seuls règle et compas, ce qui était un problème ouvert depuis les grecs. Mieux, il démontra pour quels nombres ce partage en parts égales est possible.

Gauss était un génie particulièrement précoce : à 5 ans, le maître demandait de calculer 1+2+...+100, et Gauss inscrivit immédiatement le résultat sur son ardoise : ce n'est pas qu'il fut un génial calculateur, mais il avait trouvé une formule générale pour calculer de telles sommes. A l'université, à 19 ans, il fut le premier à démontrer la loi de réciprocité quadratique, ce que ni Euler, ni Legendre n'avaient réussi. Au cours de sa vie, il en donnera huit preuves!!! Parmi ses autres prouesses, on peut citer la démonstration du théorème fondamental de l'algèbre, dans sa thèse de doctorat en 1799, l'invention de la théorie des congruences...

Le génie de Gauss se manifesta dans d'autres domaines : on lui doit d'importants travaux en électricité, en optique, en théorie du potentiel. Ainsi, le "gauss" est devenu l'unité d'induction magnétique.

Gauss acheva sa carrière de mathématicien en 1849, à l'occasion d'un jubilé en son honneur. Peu à peu, sa santé se détériore, et il meurt à Göttingen le 23 février 1855 pendant son sommeil.

Les entrées du Dicomaths correspondant à Gauss

Les mathématiciens contemporains de Gauss (né en 1777)